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CHAPTER I-

INTRODUCT ION

1.1 Introduction

The Lebesgue decomposition of measures induced by stochastic processes is

important in areas such as statistical inference and information theory.

For Gaussian processes the Lebesgue decomposition has been fully described and

the following dichotomy prevails: two Gaussian processes are either mutually absolutely

continuous, or else they are singular (see, e.g. Chatterji and Mandrekar (1978)). In the

former case expressions for the Radon-Nikodym derivative are known and the

discrimination of the two Gaussian processes is based on a threshold test on the log of

their likelihood ratio. In the latter case they can in principle be discriminated with

probability one. Some partial results are also available for other processes having finite a"

second moment (Fortet (1973)).

The Central Limit Theorem and the stability property provide the basic reasons for
'oa

regarding stable processes as a natural generalization of Gaussian processes. Most of the

work on stable processes focuses on contrasts and similarities between Gaussian and

non-Gaussian stable processes. While the problem of Lebesgue decomposition of

measures induced by Gaussian processes is the simplest and most thoroughly studied for

non-Gaussian stable processes the problem has remained largely open.

j' This work investigates mainly the Lebesgue decomposition of measures induced by

d non-Gaussian stable processes. For non-Gaussian measures, this question seems to have

been first studied by Gihman and Skorohod (1966) and Skorohod (1965) for infinitely

divisible measures in Hilbert space, and subsequently by Briggs (1975), Veeh (19S)l. and
'a'
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Brockett (1984) for measures induced by infinitely divisible processes. Except for the

first work no application of the results to non-Gaussian stable measures has been made.

The only works dealing specifically with stable measures are Zinn (1975) and Thang and 0

Tien (1980).

Sufficient conditions for an element to be an admissible translate of an infinitely

divisible measure in a Hilbert space were obtained in Gihman and Skorohod (1966).

However, as observed by Zinn (1975), these conditions are difficult to verify and, as

simplified for stable measures, they were found to be false.

Zinn (1976), investigated the structure of the set of admissible translates of stable

measures in a Hilbert space. As an application he showed that certain stable processes

have no nontrivial admissible translates. The admissible translates of symmetric stable

measures with discrete spectral measures in a Banach space were characterized by

Thang and Tien (1980).

All these works use primarily the representation of the characteristic functional of a

stable measure in Hilbert or Banach space. Here we work with stable processes and

exploit their spectral representation, which in some cases allows the formulation of the

problem in terms of processes with independent increments and/or sequences of
L

independent random variables.

1.2 Summary

The next section of this chapter (1.3) introduces the setting and notation, and

presents the basic definitions and results on stable processes.

Chapter II considers the Lebesgue decomposition between the measure induced by a

stochastic process and its translates by a nonrandom function, i.e. the problem of

t hdetecting a nonrandom signal in additive random noise. In Section 2.1, for p order

and symmetric stable processes a function space is introduced which plays a role partly

analogous to the reproducing kernel Hilbert space of a Gaussian or second order process.

V V %* %
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In particular this space provides an upper bound for the set of admissible translates, is a

stochastic processes version of a space introduced by Zinn (1975), page 249, and extends

the results of Zinn (1975), Proposition 10, to general symmetric stable processes and the

results of Fortet (1973), Th.orIme 4.1, to general pth order processes. A lower bound

for the set of admissible translates of a stable process is also provided by exploiting their

structure as mixtures of Gaussian processes, and a dichotomy is shown for a class of

stable processes which includes all sub-Gaussian and sub-Gaussian-like processes.

In Section 2 of Chapter II, stable processes with an invertible spectral

representation are considered. Their admissible translates are characterized, and a

dichotomy is established: each translate is either admissible or singular. The result i.3

applied to show that most continuous time moving averages, and all harmonizable

processes with nonatomic spectral measure have no admissible translate. Thus these

processes do not provide realistic models for additive noise, as every nonrandom signal

can be perfectly detected in their presence. General harmonizable processes and discrete

time mixed autoregressive moving averages processes are also considered.

Section 3, Chapter II, comments on the Radon-Nikodym derivatives in the case of

an admissible translate and provides an expression for the likelihood ratio in terms of the

one dimensional stable density in the case of purely atomic control measures.

Chapter III considers the Lebesgue decomposition between two measures induced ',

by certain non-Gaussian processes. In Section 3.1 equivalence and singularity of product

measures are studied. An idea of LeCam (1970) is developed further and provides a

necessary and sufficient condition for equivalence and for singularity of certain product

measures. As an application, the results of Steele (1986) on the discrimination between

a sequence of random vectors in Rk and its perturbation by rigid motions, are extended

to more general classes of perturbations; and for certain non-symmetric (skewed) stable

sequences of independent random variables, necessary and sufficient conditions are given

for equivalence and for singularity. The singularity between sequences of independent
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symmetric stable random variables with different indexes of stability is also proved.

Section 2 of Chapter III, introduces the notion of domination between pth order

processes. A necessary condition for equivalence of two Gaussian processes, namely the

setwise equality of their reproducing kernel Hilbert spaces, is shown to be true for

symmetric stable processes with the function space introduced in Chapter II replacing

the reproducing kernel Hilbert space. Further, for pth order processes with I < p < 2,

necessary conditions for absolute contintuity and sufficient conditions for singularity are

presented analogous to those of Fortet (1973) for second order processes.

Finally, Section 3 of Chapter III makes use of the results of Section 3.1 to show

that a dichotomy holds for certain symmetric stable processes including independently

scattered random measures and harmonizable processes. Necessary and sufficient

conditions for equivalence and singularity are given. The singularity between an V,
66,

invertible symmetric stable process and its multiples is also proved.

1.3 Background and notation

The following setting is considered. X = (X(t) = X(t,w); t E T) is a stochastic

process on a probability space (9, 1,P) with parameter set T and real or complex

values, i.e. values in X = R or C. When X(t) E Lp(Q, ,P) = Lp(P) for all t E T, and1

some p > 0, X is called a pth order process. The iinear space L(X) of a pth order

process X is the Lp(P) completion of the set of finite linear combinations of its random

•variables 1(X) A sp{X(t); t E T}. XT denotes the set of all extended X-valued (i.e.. real

or complex valued) functions on T, C = C(XT) the o-field generated by the cylinder sets

of XT and MX the distribution of the process X. i.e. the probability induced on C by X:
I

" X (C) P({w; X(.,w) e C}), C e C.

For two stochastic processes X and Y we are interested in the Lebesgue

5 - - . . . .*t - -6* - . . .
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decomposition of the distribution My of Y with respect to the distribution PX of X. and .,A%

in particular in conditions for My and pX to be singular (My _L yX ) , and for My to be

absolutely continuous with respect MX (My < MX). If the two measures My and pX

are mutually absolutely continuous we say that they are equivalent (My - MX). Of

particular interest is the case where Y = s + X for a nonrandom function s on T. The

function s is then called a singular or admissible translate of X if s+ _L pX or

M5+X < pX respectively.

Here we focus primarily on symmetric a-stable (SaS) processes. A real random

variable X is SaS, 0 < a < 2, with scale parameter IXlII, E (0,oo) if E{exp(iuX)} =

exp{-IIXIIIul }. A real random vector (Xi,...,Xn) is SaS (or its components are

jointly SaS) if all linear combinations Z~nlakXk are SaS. Similarly a real stochastic
process X = (X(t); t E T) is SaS if all linear combinations E,=1anX(tk ) are SaS

random variables. When c = 2 we have zero mean Gaussian random variables, vectors

and processes respectively. When 0 < a < 2, the tails of the distributions are heavier

and only moments of order p E (0,a) are finite with

9.

{E(IxlP)} 1/ p =Cp.alIX11a, ,

where the constant Cp, a is independent of X. Thus a SaS process X is pth order for all

0 < p < a. and its linear space L(X) does not depend on p and is the completion of /(X)

with respect to I1.11 Aa, which in fact metrizes convergence in probability (Schilder

(1970)). ..

An important class of ScS processes consists of SaS independently scattered

random measures, which extend the concept of a stochastic process with independent

increments to more general parameter spaces. Let I be an arbitrary set and 5 a &ring of

subsets of I with the property that there exists an increasing sequence (In; n E N) in 3
S

with Urln = i. A real stochastic process Z = (Z(A); A E 3) is called an independently

S-...- . . . -.
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scattered SaS random measure if for every sequence (An; n E= N) of disjoint sets in 3, the

random variables {Z(An); n E N} are independent, and whenever UnAn E 3 then

Z(UnAn) = EnZ(An) a.s., and for every A E 5, Z(A) is a SaS random variable, i.e.
E{exp(iuZ(A))} exp-(Au a werm )

II(= p.*J-(Ju." where m(A) = llZ(A)lla. Then m is a measure on

3 which extends uniquely to a ai-finite measure on a(i), and is called the control

measures of Z. Conversely, the existence of an independently scattered SaS random

measure with a given control measure is a consequence of Komogorov's consistency

theorem.

When I is an interval of the real line, there is an identification between independent

increments processes and independently scattered random measures. Namely if

X = (X(t), t E 1) is an independent increments process and (a,b) C I: an interval,

Z((a,b]) 4= X(b) - X(a) can be extended to an independently scattered random measure

on the 6-ring J of bounded Borel sets of I. Conversely given an independently scattered

random measure Z on 3, and a in I, X(t) = sign(t-a)Z((aAt,aVt]), t E I, is an

independent increments process. When the control measure m is Lebesgue measure,

then X has stationary independent increments, E{exp (iu[X(t) - X(t')])} =

exp { - It - t'l lull}, and is called SaS motion on 1.

For any function f E La(l,r(i),m) = La(m) the stochastic integral flfdZ can be

defined in the usual way and is a SaS random variable with Ilf 1fdZJll = IlfIl (m).

The stochastic integral map f -- f 1fdZ from La(m) into L(Z) is an isometry and

(1.3.1) L(Z) = {ffdZ; f E L,(m)}.

The stochastic integral allows for the construction of SaS processes with generally

dependent values by means of the spectral representation

kE

(1.3.2) X(t) = flf(tu)Z(du), t E T,

%1~

% %..
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where {f(t,.); t E T} C L,(m). In fact every SaS process X has such a spectral
I

representation in law, in the sense that for some family {f(t, .), t E T} in some La(m),

(1.3.3) (X(t); t E T) L (flf(t,u)Z(du); t E T)

(see e.g., Kuelbs (1973) and Hardin (1982)). If L(X) is separable, e.g. X is continuous in

probability, then La(I,m) can be chosen as La([0,1],Leb). Specific examples of SaS

processes will be considered in the following sections.

The covariation [X,Y]a of two jointly SaS random variables X and Y with

1 < a < 2 is defined by

[X,Y], E(XY<P
- l>)

(1.3.4) IYll E(JYJ p )  ,

which holds for all 0 < p < a, where y<C = yI q-1y, q > 0 (see e.g. Cambanis and

Miamee (1985)). It follows that I(XIac = [X,Xla. If X and Y have representations

f~fdZ and f~gdZ respectively then [X,Y]a = flfg<a-l>dm.

In certain cases, such as when working with Fourier transforms, it is more natural

and convenient to work with complex valued processes. A complex SaS random variable

is defined as having jointly SaS real and imaginary parts. Except for the replesentation

of the characteristic function, all concepts and results considered in this section for real

SaS random variables and processes extend to the complex case (see e.g. Cambanis

(1982) and Cambanis and Miamee (1985)).

N.I
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CHAPTER II

ADMISSIBLE AND SINGULAR TRANSLATES

2.1 An upper bound for the set of admissible translates

A space of functions associated with a pth order, 0 < p < 2, stochastic process will

be introduced and seen as a partial extension of the reproducing kernel Hilbert space

th
(RKHS) associated with a second order process. We concentrate only on p order

processes with p < 2 because for those with p > 2 the second order theory is applicable.

Recall that for a second order stochastic process X = (X(t); t E T) with arbitrary

index set T, zero mean and covariance function R, the RKHS H of X (or of R) consists

of all functions s of the form s(t) = E(X(t)Y), t E T, Y E L(X). If si(t) = E(X(t)-y i)

then <sl,s2>H == E(YIY2) defines an inner product and R is a reproducing kernel, i.e.

for all t E T, R(-,t) E H and s(t) = <s,R(.,t)>H. Also s E H if and only if

lINI ans(tn)lllsll n-S~E212 - .-1 .,,. < 00,

tI.n= 1 n ~

where the supremum is taken over all N E N, a 1 ....aN E X and t 1 . tN E T (see e.g.

Fortet (1973)).

th
We now introduce the function space of a p order process with 0 < p !< 2 and

arbitrary index T, and present its properties.

Definition 2.2.1. The function space F = F(X) of a pth order process

X = (X(t); t E T) with 0 < p < 2 is the set of all functions s on T such that

.

. .- -1-*. -

+:+.-,:,,:.:... .++_, ,.. .+..+,,'.+'. + + , .-. .....,.... ..... ..- .-..-.-.... .-..-... ....-...-....... .. .... .... .. ... .... ... ..- .',-14 . ".
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"I nlans(tn)l
"$'iF sup[EIEN 1 anX(tn)l pl l /p

where the supremum is taken over all N E N, al,...,aN E X and tl,...,tN E T.

When 1 < p < 2, a representation is known for the bounded linear functionals on

the linear space of X, analogous to the Riesz representation for bounded linear

functionals on a Hilbert space. This allows us to express the functions in F in terms of %

moments of the process X. This and further properties of the function space are

collected in the following

Proposition 2.1.2. Let X = (X(t); t E T) be a pth order process with 1 < p < 2. Then

the following three statements are equivalent:

i) sEF,

ii) s(t) = E(X(t)Y<P - 1>) for Y E L(X),

iii) s(t) = E(X(t)W) for W E L p(P) where 1/p+l/p* = 1.
p

Moreover the following properties hold.

a) I]s 1F = lIYll~p(P) if s(t) = E(X(t)Y <P-I>), Y E L(X).

b) For each s E F, with s(t) = E(X(t)Y <P->), Y E L(X), there exists a

unique W E Lp(P) (namely W = Y <p-l>) satisfying iii) and IIsIF =--- IWL p(P).
p

c) (FI1.IIF) is a Banach space isometrically isomorphic to the quotient space

Lp,(P)//(X) - where I(X) denotes the annihilator of 1(X).

Proof: i) =- ii) follows by observing that if IIsIIF < oo, then

s(NlanX(tn)) = ENlans(tn) defines a bounded linear functional on L(X) with

norm Ii511F. From Cambanis and Miller (1981), Proposition 2.1, there exists a unique Y

p-1
E L(X) such that zps(.) = E("Y p- ) and Il4 sll±(X)* - lgllLp(P). Thus

s(t) = 0s(X(t)) = E(X(t)Y<p-i>

N'
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ii) * iii) If Y E L(X) the, W = yEl E Lp,(P) and i[WiLp,(P) rp--I l>

IIYLp(P). Also s(t) = E(X(t)Y< p - 1>) = E(X(t)W).

iii) =:. i) If s(t) = E(X(t)W) then it is clear from its definition that I1slIF is

finite.
p-I

a) That JjsliF = I1YI1Lp(P) follows as in the proof of i) => ii).

b) Let s E F. By iii) there exist Z E Lp,(P) such that s(t) = E(X(t)Z). Let

(X) "1 be the closed linear space

{Z' E Lp*(f); E(Z'Y) = 0, Y E /(X)},

and let Z0 be the best approximation of X in l(X) - i.e.

=inf{1Z- P,(p); Z' E 1(X)-±-}.

Such a Z0 E (X) 1 exists and is unique (Singer (1970), Corollary 3.5 and Theorem

1.11). Set W = Z-Z 0 . Then E(ZY) - E(W;V) for all Y E 1(X). If Z' is such that

E(Z'Y) = E(ZV) for all Y E (X), then Z-Z' E (X) - and

IIWIILp,(P) = IZ-Z0ILp,(P) < IIZ-(Z-Z')IILp(P) = IIZ'IIL~p(P).

Thus if s(t) = E(X(t)W'), W' E Lp.(P), and 'ls[F = IIW'IILp(p) we must have

IIWIlLp.(P) < IIW'IILp,(p). On the other hand

} [E(E an(tn )w ) l
" IW'IILp,(p) = IslIF = sup < IIWIILp,( p )'

n=1 anX(tn)llLp(P)

Therefore IIWIILP,(P) = IIW'IILp*(P) = 1slF. Putting V = Z-W' we have

V E I(X) - and

%1

it PC, -



IIZ-ZOIILp,(P) = tIWiILp,(P) = IIW'IILp,(P) = IIZ-VlILp,(P).

Thus the u,,icity of Z0 implies W = W'. Since Y<P->E Lp,(P) and

= " 1Y<p-l> for s(t) = E(X(t)Y<p-l>) we must have W = Y<Pl>IlslF= [VlLp,(P)wemshveW=yp >

c) That (F,1I'IIF) is a normed linear space is clear. To show that F is

isometrically isomorphic to Lp,(P)/I(X) - , let si E Fi = 1,2,

-a,

si(t) = E(X(t)Wi), and (sl+s 2 )(t) = E(X(t)W),

where W 1 ,W 2 and W are the unique elements in Lp ) such that

IIsiIIF = IIWiIILp*(P), and IIs1+s2IIF = IIWIILp,(P).

Since _

E(X(t)W) = (s l +s 2 )(t) = E(X(t)(W 1 +W 2))

we have W- (W 1 +W 2 ) E I(X) -L i.e. [W] = [W 1 +W 2 ] = [W 1 J+[W 2 ], where [
denotes an equivalence class in L p(P)//(X) -L . Similarly if s(t) = E(X(t)W) and

p V

(as)(t) = E(X(t)WV) we have [V] = laW] = a(W]. Hence the map s - (W] is linear

and since

"p()'X Lp,(P)

it is an isometric isomorphism.

To finish the proof of c) we need to show that F is complete. Let (sk; k E N) be a

sequence in F such that E0 k i'1Ik 1 F<o and let Wk E Lp,(P) be such that

[ W II k [O E (P)H be s c that

kLp*(P) IIsk Hence 11w <koc and W = E L (P).

%'

t"

;j .u' -' •Z-d~>~~% %
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Set s(t) = E(X(t)W). Thus

iYN lan(k K - - S- ) ( t n ) l -:11E~Kl Wk-VHL, )IIN i a n x ( tn)IILpP)

and

k K ---KW P) 0 as K oo,
Ik=l s k / s llF < _l k=l Wk-WllLpP)1

i.e. Fk lSn E F proving that F is complete. 0
k=I.

Further properties of the function space F of the process X, for 1 < p !< 2,

analogous to those of a RKHS are the following:

i) If T is a metric space, functions in F are as "smooth" as the process X is in

the weak sense, i.e., they are continuous (differentiable) if and only if X is weakly

continuous (differentiable).

ii) Norm convergence in F implies pointwise convergency, and the convergence is

uniform if IIX(t)Ip is uniformly bounded.

If the process X is SaS with 1 < c < 2, then it is of pth order for each p E (1,o)

and its function space F does not depend on p but only on a and can be defined by

means of moments. Furthermore the functions in F can be expressed in terms of the C

spectral representation of the process.

Corollary !, Let X = (X(t); t E T) be a SaS process with 1 < a < 2 and spectral

representation

X(t) = flf(t,u)Z(du), t E T,

where Z has control measure m. Then the following three statements are equivalent

i) sEF,

ii) s(t) = [X(t),Y], for Y E L(X),

iii) s(t) = flf(t,u)2(u)m(du) for z E L ,(m) where 1/a*+/a . %
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Moreover the following properties hold.

a) = Z:N 1 ans(tn)l

I1sIIF =CP,SuPIIN_ 1 anx(tn)Ila a

b) For each s E F there exists a unique z E L a*(m) satisfying iii) and 11slIF

11Z11 *(a

a
c) The map s - [z] from F into L *(m)/l(f)' where []is an equivalence

a

class in L *(m)/(f)'-, 1(f) = splf(t,.); t E TI, is an isometric isomorphism.

P ro of: i) <* ii). It follows from 1.3.3 that for all p E (1,a),

V [.Y]0, = E( Z

where

Z Cp,a IIY IaP/(-) and IIZIIL (p Gp1IY1"-11

so that s E F if and only if s(t) = [X(t),Y), which does not depend on p.

ii) '<. iii). If Y E L(X) then Y =flgdZ for some

g E Z(f) = ip{f(t,.); t E T}, and

s(t) =(X(t),Y~a =(flf(t)dZ,f~gdZ]a=

=f 1f(t)g <a-> dm =f~f(t)zdm,

where z =g<a> E La*(m) and II11LI = al

* The proofs of iii) => i), the uniqueness of z and of the isometric isomorphism are

identical to those of Proposition 2.1.0

% % %% %
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Further, the well known dichotomy on the admissible translates of a Gaussian

process - namely that the admissible translates of a Gaussian process are precisely the

functions in its RKHS, and its translates by functions outisde its RKHS are singular -

has a partial analog for pth order processes 0 < p < 2, where the RKHS is replaced by

the function space F. Our result extends that of Thtoreme 4.1 in Fortet (1973) to pth

order processes with 0 < p < 2, and when applied to SaS processes with 0 < a < 2, it

generalizes Proposition 10 in Zinn (1975) to any SaS process.

Proposition 2 .1.4. Let X = (X(t); t E T) be a pth order process with 0 < p < 2. If

s 0 F then ps+X _L MX. Consequently all admissible translates of X belong to F.

Proof. The proof is adapted from Pang (1973). If s E F, then

N 1 ans(tn)l

sp n=NlanX(tn )IIL=(P)

Hence for each n E N, we can choose Nn, ank, tn, k , k = 1,...,Nn such that

SIZ N 1 an,kS(tnk) > 1/p,
II N__nlan ,kX( .',, '~ P

Nn

E (tnk U p P,-

ket 8 n,k a s n, k

LetNsnn k t) Without loss of generality we can consider sn > 0 for all

T C'-~pX) byn. Consider the random variables defined on (X

-Nn a XT

Yn(r) = Z.klan,kx(tnk). x E X

By the Markov inequality we have

Px(Yn > Sn/ 2 ) !S mx(lYn sn/2)

Vaa.

% % % % $*'*4*d~~*
%v %%a~~~ ~
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p
< 2P1IYnIIL (p)/Sn < 2P/n -* 0 as n -o

and

Ps+x(Yn Sn/ 2 ) = px(Yn+sn _> sn/2)

=Px(Yn - - sn/2)

> Px(lYni < Sn/2 )  
.'

- -N,

- 1 - Px(IYn1 >_ sn/2)

P p P p."
" I - 2 11Yn1Lp(P)/sn

>1 - 2P/n - 1 as n - oc.

Therefore /jX -L js+X" 0

Restricting our attention to SaS processes we see that in contrast with the

Gaussian case, a = 2, where the set of admissible translates is always the entire space e

F, i.e. the RKHS, the set of admissible translates of a SaS process with a < 2 may be as

large as the entire function space F or as small as {0}, as is seen by the following

exam pies.

Stable Motion: If X = (X(t);t E [0,11) is a SaS motion, i.e., X has stationary

independent SaS increments, it is known (Brockett and Tucker (1977), Gihman and

Skorohod (1966), Zinn (1975)), that X has no nontrivial admissible translates for

0 < a < 2. On the other hand for 1 < a < 2, its function space is the space of

absolutely continuous functions with s(O) = 0 and derivative in L ,(Leb), i.e.

-t

F = {s; s(t) = fts'(u)du, t E [0,11, s' E L ,(Leb)}
0 af

with ISI1F 11s',L *(Leb)"

aN% %
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Sub-Gaussian Drocesses: Let X - (X(t); t E T) be an a-sub-Gaussian process, i.e. its

finite dimensional characteristic functions have the form

E{exp(i-N lanX(tn))} =exp{-(IZ$nm lanR(tn,tm)am) a/2

where R is a covariance function, or equivalently

(X(t); t E T) (Al/2G(t);tE

where A is a normalized positive (a/2)-stable random variable independent of the

Gaussian process G = (G(t); t E T) which has zero mean and covariance function R. It

follows from Huang and Cambanis (1979) that the set of admissible translates of X

coincides with the RKHS of G, once we observe that there the proof depends only on the

representatior of spherically invariant processes as scale mixtures of Gaussian processes

and not on the existence of second moments. Moreover for any Y E L(X),

[X(t),Y]a = 2a/2 {E(W2)}I-/2E(G(t)W),

where W E L(G) is obtained from G by the same linear operation Y is obtained from X

(see Cambanis and Miller (1981)). Therefore the function space F of X coincides with

the RKHS of G and is therefore a Hilbert space. .

Stable processes as mixtures of Gaussian processes. It has been shown in LePage (1980)

that every SaS process X is conditionally Gaussian with zero mean, i.e. there exists a

sub-a-field g of (I such that given g, the law of X is Gaussian with mean zero and

covariance function R. Denoting by GR such a Gaussian process and by uGR its

distribution, we have that for every SaS process X there exists a probability A\ on the

% 1. 0 N %
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space R of all covariance functions R such that "

b

px(E) = f~jGR (E)A(drP)

for all E E C. The SaS process X is thus a Gaussian process with random covariance

function R, and it is easily checked that all quadratic forms N R(tt re

n,m= 1 anR n' m) imar

positive (a/2)-stable random variables. Likewise we have for all E E C,

Ps+X(E) = f*Ps+GR(E)A(dR). %

It follows that if s is an admissible translate of almost all GS then it is an
Rt s'te isa S

admissible translate of X too. This gives a lower bound for the set of admissible

translates of X, namely

U n RKHS (R).
Ac ? RER\A;A( A)=o -

Thus a SaS process will have admissible translates if it is a mixture of Gaussian

processes whose RKHS's have a common part, i.e. if nR \ARKHS(R) € {0} for

some A(A) = 0.

The converse does not seem to be necessarily true, i.e. an admissible translate of X

may not be an admissible translate of almost all the Gaussian processes whose mixture

is X.

It also follows that a singular translate of X is a singular translate of almost all the

Gaussian processes whose mixture is X, and furthermore the same event separates them.

This gives an upper bound for the set of singular trarslates of X, namely

-€,

V"" ",-".

-% LA ? ',& t,-Jr. , -I. P



U n RKHS(R) c. .I

AC3? RER\AA(^)=o

Conversely, if s is a singular translate of a.e. GR (A), it may not be a singular translate

of X; but if furthermore the separating set of M s+G and PG does not depend on R

a.e. (A), then s is a singular translate of X.

When a SaS process is a mixture of Gaussian processes having the same RKHS

then we show that a dichotomy prevails, with every translate being either admissible or

singular.

Proposition 2.1.5. Let the SaS process X (X(t); t E T) be the A-mixture of Gaussian I

processes GR = (GR(t); t E T) such that RKHS(R) = H a.e. (A). Then s is an

admissible translate of X if and only if s E H, and s is a singular translate of X if and

only ifs H.

Proof: If s E H, then s is an admissible translate of a.e. GR(A), and hence of X.

Now assumes 0 H. Let RKHS(R) = H for all R E R\A, A(A) = 0, and fix

R 0 E 1\A. Then for each n E N, there exit Nn, an,1,...,a n,Nn tn, 1. tn,Nn such that

Iy N n l a S t~ )12 f

k= I ~an s( tn ,k 2

EIk= lGn,k R0 (tn,k ) 2

Since for every R E *\A, RKHS(R) = l, there exists 0 < cR < o such that

EIYNnl2 Nn 2
k=_ n.k R(tn,k)•l < cRE k=l a1 , GROt nk•l

= xNn "As in Proposition 2.1.4, let sn =_Vk=ln,k(tn,k ) , (and WLOG assume s n > 0) and 40

Yn(N) X so that V

. . . . . . . . . . . . . . . . . . .SW - .',' -. " ..-.- . ....- ... ...
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I'G (Yn !sn/2) 22 2Ey'n a G nt)2 Ps

R ,k1n,k Rtn)1/s

~~= 4pIankGR (tn)I2/Sri

< 4 cpR/n - 0 as n - o

and

As+G (Yn !sn/2 ) 1 - P'G (IYnI > sn/2)
R R

>1 - /n as n-..

Hence by the dominated convergence theorem

IIX(yn ! Sn/2) = fRPG (Yn sn/2)A(dR) - 0 as n - Dc.

and

A,+X(yn >: Sn! 2 ) -z ~t,+G (Yni sn/2).\(dR) - 1 as n - Dc
4' R

This implies pX I psX Hence every s H is a singular translate of X, and the proof

of the dichotomy is complete. 0

I, The assumptions of Proposition 2.1.5 are satisfied when X is sub-Gaussian. i.e. X is
-1/2

the mixture of the mutually singular Gaussian process a G, a > 0, which have

identical RKHS; or in the more general case where X is the mixture of Gaussian

-a. processes with random covariance function of the form E' Annt$,weeheR'

-a'.4" ~~~~~n=1nnts.weeteR
-a'are fixed (nonrandom) covariance such that Rn -cnmRm is nonnegative definite for all

n.m -. ,n:Am. and some 0 < cn~m < cxo, and the positive random variables

a' A1 .IAn. are jointly (a/2)-stable.

The usefulness of these general remarks is limited by the fact that the only SOS

mixtures of Gaussian processes, which are currently known explicitly, are the sub-

N 1/2Gaussian processes, and the more general finite sums Z; 1An Gn., where (.A I-_A
-aN)
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is positive (a/2)-stable and independent of the mutually independent Gaussian processes

G 1 '...,GN.

Further examples where the set of admissible translates is trivial or a proper subset

of the function space F are presented in the next section. It should finally be recalled

that the set of admissible translates of a SaS process is always a linear space, even if it

is not the entire function space F (Zinn (1975), Corollary 5.1). However, as will be seen

in the next section, the restriction of 11'F to the set of admissible translates may not be

the most natural way to define a topology on it. Also, from the linear structure we have

that /s+X < /X =:= pX < us+X (see e.g. Thang and Tien (1979)) so that for every

admissible translate s, as+X and MX are equivalent.

2.2 Translates of invertible processes

In this section we present some general results on the admissible translates of

certain SaS processes with invertible spectral representation.

Let X = (X(t); t E T) be a SaS stochastic process with spectral representation as P'

in (1.3.2). It follows from the continuity of the stochastic integral map f -- ffdZ and I-

(1.3.1) that the representing functions {(f(t,.); t E T)} are linearly dense in La(m), i.e.

that L(f) = L 0 (m), where L(f) is the completion of 1(f) = sp{(f(t,.); t E T)} in La(m), '.

if and only if L(X) = L(Z). Processes satisfying this condition will be said to have an

invertible spectral representation or more simply to be invertible. ,

Every Gaussian process is invertible Cambanis (1975), construction in Theorem 2.

This is not generally true for non-Gaussian SaS processes as can be seen from the fact %, .

that the linear space of a sub-Gaussian process does not contain (nontrivial) independ'mt

random variables (Cambanis and Soltani (1982), Lemma 2.1). Necessary and sufficient

conditions for a general SaS process to have an invertible spectral representation are

given in Cambanis (1982), Theorems 5.1 and 5.5. A stronger form of invc-tibiiitv for a

nonanticipating SaS moving average is considered in Cambanis and Soltani (1982).

%.. %

'.~~~~~~a , % - - &- AA1Z V2
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Lemma 3.1. SaS processes with invertible spectral representation in L2 ([0,11, Leb), i.e.

L2-§-p{f(t,-); t E [0,1]} = L2 ([0,1], Leb), are considered in Zinn (1975); clearly such a

process has also invertible spectral representation in La([0,1], Leb). Examples of

invertible SaS processes will be presented in the sequel.

For invertible processes the problem of finding their admissible translates can be

reduced to finding the admissible translates of the independently scattered random

measure Z, which we now consider first.

The next proposition is essentially based on Gihman and Skorohod (1966),

Theorem 7.3. It extends to independently scattered SaS random measures with non-

atomic control measure the result in Brockett and Tucker (1977) and Zinn (1975) on

admissible translates of independent increments processes in [O,T] which are

stochastically continuous and have no Gaussian component. It establishes a dichotomy

for the translates of a general independently scattered SaS random measure and it

characterizes its admissible translates as those of its atomic component.

The following notation will be used in Proposition 2.2.1. Recall that if a o-finite

measure space (l,or(5),m) is such that a(5) contains all single points sets (e.g. I is a

Polish space, a(5) its Borel sets, and 3 the 6-ring of Borel sets with finite m-measure)
then m = ma+md where ma is purely atomic and md is diffuse (non-atomic) (Kingman

and Taylor (1966)), and the set of atoms is at most countable, say

A = {an; n E {1,2,....N} n N}, N the number of atoms. Thus if Z = (Z(B): B E 3) is

an independently scattered SaS random measure with control measure m, it can be

expressed as %

Z = Za +Zd,

where Za and Zd are independent SaS independently scattered random measures defined

for all B E 3 by

'I.

-0 .



Za(B) =Z(AflB) and Z d(B) =Z(AcflB),

and have control measures ma and md respectively. The atomic component has a series K

expansion

Za(B)n= = B(an)Z({an})

which can be normalized by using the i.i.d. standard SaS random variables

Zn Z({an}l)m 1 ({an})

with Efexp(iuZn)} =exp(-Iuia), as follows:

Za(B) = N 1 B(/n) (4.

n=1 B(an~m n D Z

Proposition 2.2.1: Let Z = (Z(B): B E 3) be an independently scattered SaS random

measure with 0 < a < 2 and contr-ol measure m = ma+md, and let S =(S(B); B E 3)

be a set function. Then the following are equivalent:

i) Sis a adissile tansate f Z

ii) S is an admissible translate OfZ,

iii) S is concentrated on A, i.e.

S(B) nz~1 S({an})lB(an),

and

N 2 2/(k

n IISfan)) /M fan))< 00

%S
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Furthermore a translate which is not admissible is singular.

Proof: Let (a and d be the stochastic processes with parameter set J defined Viu h(

probability space (X , C(T), "z) by

(a(B,x) = x(AB), and Cd(B,x) = x(AcfnB), x E X ', B E J.

Clearly

(2.2.1) (a(B,Z(.,w)) = Z(AnB,w) Za(B,w), and

(d(B,Z(.,w)) = Z(ACnB,w) = Zd(B,w), a.s. (P),

so that (a and (d are independently scattered SaS random measures with control J-

measures ma and md respectively. Let (a and (d also denote the corresponding linear

maps x - (a(.,x) and x - (d(.,£) from Xj into X .

i) : ii) Suppose MS+Z < pZ" Hence by Proposition 2.1.4, S E F and by '

definition of F the map F:L(Z) X defined by

F(Z]klakZ(Ak)) - ZklakS(Ak)

is a well defined linear functional so that S is a signed measures on J. Furthermore since

1/aIS(B)I < Cp,aIISH1FIIz(B)I, = Cp,aIISIF[m(B)] / p

S is absolutely continuous with respect to m, i.e. S(B)= fBZdm for some z locally ill

L1 (m): z EB E L 1 (m) for all B E 3.

It follows that pS+Zsd 1< t'z or equivalently (d(,, S) is an admissible

V V% %" r V'9 Jpi
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translate of the process (d, since Cd is linear. Now

d(B,S) = S(AcnB) = f 2dm = f2dmd = Sd(B).

AcfB B

Since md is nonatomic it follows from a well known results (Halmos (1975), p. 174)

that we can find measurable partitions {B k(B):k = 1,2,...k.}, j = 1,2,..., of B for

which

(2.2.2) max md (Bjk(B)) - 0 as j - c.

For notational simplicity we will omit in the following the dependence on B. It follows

that the triangular system of rowwise independent random variables

{I(d(Bj,k); k = 1,2,...,K-, j = 1,2,...} is infinitesimal, i.e. for every c > 0,

?-'

max p.-Z(1(( as (B.0

iii
l--_K." d'jK.' ~ 0.

K.
Henesiceforevryj,(d (B) = _kj~ ( ~) we have from the central limit

theorem for triangular arrays and the fact that has no Gaussian component that

K,.

imif ," i Var){Zk (" "'" k)M ( 0(se eMg. ruo and (in (0), Thoe 4.) Thus) by jhbse' inequaldity0

. W
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Sd(B Jk) 0 as j - o, and hence for j large

K. K
Sd(B) = k =J~ Sd(Bj,k) Zk=1 d(Bj,k)l(.-fC ) (ISdBk)I).

Similarly

K.5

(2.2.4) Ekj (Sd(B.~ + (d(B. k))1 -,C(ISd(B. k))+ dBkl S(

in MZ-probability as j - oc and c - 0.

Define for B E 3 the map O(B,.): X~ - by

K.
(2.2.5) O(B,x) = liminf liminf ZF, J B ~((Bk))

f- oj - -ok14 ,)((C

Suppose Sd is not identically zero. Then there exists Be E such that S d(B) 0.

* It follows from (2.2.3) and (2.2.4) that

O(B1d('x)) 0 and tO(B,Sd±Cd(.,x)) Sd(B) a.e. (pZ)

Thus Szo& (B,.) J- k7 and hence tAS+Z -Lp which is a contradiction.
Therefore Sd(B) f fB~dmd =0 for all B E 3, i.e. z =0 a.e. (md), so that

(2.2.6) S(B) f fBdm n~l ~ a)B(an)m({anD)

Reasoning as before we have pS'(a Iie a'5 s namsil

translate of (a (or Za), and by (2.2.6)%

(a(B,S) =S(AflB) f 2dm~ f~dma S(B)
*AnB B

%V
-- d XA )L,
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.P
4.

i.e. S = (a(',S) is an admissible translate of Za. 6

ii) =: i). Suppose S is an admissible translate of Za. Since Z = Za +Zd and Za

and Zd are independe,'t .,.e have z #Za * d. Then MS+Za < 'Za impliesand

Ps+z < Z' Indeed

0 --- z(B) fp (B (dx)
- 'Za Bx)IiZd)

implies

PZa(B-x) = 0 a.e. (uZd)

hence

0 = "S+Za (B-x) = PZa(B-S-x) a.e. (/Z d) -

and thus

pS+z(B) Iz(B-S) fPZa(BSX) Zd (dx) = 0.

ii) ' iii). Because S E F, S is absolutely continuous with respect to md,
N() = "-'"ln} l n)

S(B) --- Z 1S(an})lB(an. Let :Xj -. 5Z" , where X = {1,...,N} if N < oc and .-..

X = N otherwise, be defined by 4

1/a ( U

[,(x)](n) = 0(n,x) = Ca(an},x)/m ({an}).

6

Thus by (2.2.1), 0(n,.), n E X, are standard SaS i.i.d. random variables, U-

V,(n,S) ( a({an}, S)/m 1/a (fan))= S({an})/ml1/a ({an}) "-

and

wO(n,S+x) = e(n,S)+V,(n,x) =S({an})/m (fan}1)+ (n,x). ,.

-,w

oS+Z a < PZa implies lS+Za,- < PZaP1

.-€%

,'%(S )

....
% N. % % %
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(S(an)/m ({an}); n E X) is an admissible translate of the random element (V'(n,.); n"'.'

E X) defined on the probability space (Xi, C(X),sZ). It follows from Shepp (1965) if N
J ) efindonN 2 a}/2/a

= - and trivially if N < co that N S({an })/m (an}) < 00.

iii) => ii). Conversely, if nnS2({n})/m2 / ({an}) < oo it follows from Shepp

(1965) and the fact that stable densities have finite Fisher information (DuMouchel

1/a
(1973)) that (S({an)/m ({an}); n E X) is an admissible translate of

(;(n,.); n E X) (the result is trivial if N < oo). Therefore

-7N S({an})1B({an}) = S(B)

is an admissible translate of the process

EN 1/ n)~~) N 1%

n=llB({an})ml/a({an))b(n,x) = ZnI1B(an){an},x) = (a(B,x)

and hence of Za.

To prove that a translate S which is not admissible is singular it suffices to consider

such a translate in F, i.e. from the proof of i) =, ii), S(B) fBzdm. If

md(lzI > 0) > 0 then kS+Z ± p"z Thus assume

S(B) = fB dma = n= 1 S({an )lB(an).

an N 2 2o
Since it is not admissible, by iii) N = oo and Zn=lS2({an})/m ({an}) = c

1/a
Hence from Shepp (1965), (S({an})/m ({an}); n E N) is a singular translate of

(4(n,'); n E N), i.e. 1S+Z?-  _ pZO - , which implies S+Z _L /Z. 0

It follows that the admissible translates of a SaS independently scattered random

measure are quite different in the Gaussian and non-Gaussian cases. Indeed, for Z

I'll eu t Z e

% ar%
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Gaussian (a = 2) every element in its function space (i.e. its RKHS)

F 2 = {S; S(B) = fBzdm, 2 E L2 (m)} 4.

{S; S signed measure on a(), S < m, L L 2 (m)}

(see, e.g. Chatterji and Mandrekar (1978)) is an admissible translate, while, e.g. for Z

non-Gauss'an with 1 < a < 2 its only admissible translates are S(B) = fB2dm,

N 2 2/a
z La.(m), with z = 0 a.e. (md), and Zn _IS({an}) /M ({an) < oo. Hence for

1 < a < 2 the set of admissible translates is a proper subset of the function space Fa

which is given by

Fa = {S: s signed measure on u(i), S < m, S E La.(m)}.

In particular, while a diffuse Gaussian random measure has a rich class of admissible

translates, a diffuse non-Gaussian SaS random measure has no admissible translate

whatever. On the otner hand, if m (or Z) is atomic (md = 0), the condition in P

Proposition 2.2.1 iii) extends the Gaussian condition. Indeed if a 2 and

S(B) =JBa-s dm EN dS ,
S(B)=-B]-. 1-(an)m({an})

as dm( n=* jm

then Zn= lS({an})12 /m({an)2/a < o is equivalent to 2 (m).

The results of Proposition 2.2.1 can now be used to obtain a dichotomy for the

translates of an invertible SaS process, and to characterize its admissible translates as

those of its atomic component. In order to state the result for a SaS process X with
-S9

spectral representation X(t) = f f(t,u)Z(du) and control measure m, we introduce the %.e

independent SaS diffuse and atomic component processes of X: V?.

S,
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Xd(t) = fAcf(t u)Z(du) flf(tu)Zd(t),

4%Xa(t) -- X(t)- Xd(t) =fAf(t u)Z(du) =ff(t,u)Za(du),

The atomic component Xa has a series expansion

Xa(t) = EN f(t,an)Z({an}),

$n=1

which can be normalized by putting

Zn = Z({an})/m /a ({an}) and fn(t) = f(t,an)m 1/a n}),

so that the Zn's are standard SaS i.i.d. random variables, for all t E T, ZNlifn(t)lO

< cc, and

Xa(t) N=lfn(t)Zn.

'5,

Proposition 2.2.2. Let X = (X(t); t E T) be a SaS process with 0 < a < 2, invertible .

spectral representation X(t) = flf(t,u)Z(du) and control measure m, and let 4,

Ss = (s(t); t E T) be a function on T. Then the following are equivalent:

i) s is an admissible translate of X, ',

ii) s is an admissible translate of Xa,

iii) s(t) = ENishf(t,an) with EN 2 2/a
iii) S( n=>.niIlsnI /M ({an }) < '00,

i.e.
t) E Nn 12 <'

S(t) = ZN=lsnfn(t) with En In< c.
I

n= ",

-44..'.' 4%

44*4~ ~ %4 %444 44~4~ ~4 J 4 1 4 '' % %.
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Furthermore a translate which is not admissible is singular.

Proof: i) Since 1B E L (m) = L(f), for any B E 3, there exist

On(B,.) E sp{(f(t,.); t E T)}, n = 1,2,..., i.e.

n(B,-) N ank(B)f(tnk(B),.),

such that

sn(B,.) 1 in L,(m) as n - .

Define

Nn(B),
n(B,x) = z-knl Bank(B) x(tnk(B)), x E XT.

Thus

(2.2.7) On(B,X(,w))= Nn ( B)ank(B)x(t k(B),,)

= f1 ~n(B,u)Z(du,w) -. fu1B(U)Z(duw) = Z(B,,)

in Lp (hence in probability) as n - o. Thus (0n(B,.); n E N) converges in MX"

measure. Let (0n(B,.); k E N) be a subsequence converging a.e. (pX) and define

(6k

2(B) = Z(B,.) = 1iminf Cn (B, .)1
k--i k {x;On k (B,x) converges}

. .

Z(B,.) is a well defined C-measurable function on XT for each B E 3. Hence

= (2(B): B E 3) is a stochastic process on the probability space (XT,C.pX), and from

(2.2.7), Z(BX(-,w)) = Z(B,w) a.s., so that Z is equal in law to Z. i.e. Z is an

independently scattered SaS random measure with control measure m.

i) => ii) Let s be an admissible translate of X. From Proposition 2.1.4. s E F. i.e.

wb4

-. - -% ~ .'.;~:' %... .--.--- -' . -
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for p E (O,a),

n a , n= a X

~kIlaks(tk)l IsIF klIktk)NLp(P).

Hence as in Proposition 2.2.1, F["n= lakX(tk)] = a is a well definedk 1 k lks(tk)is wldend

continuous linear functional on L(X) and s(t) = F(X(t)]. Thus 2-

-F[
N n (B ) ak(B)X(tn,k(B)] -F[Z(B)] asn -x.

On(B~) = zk= 1 n,k

Hence for all B E 5,

(2.2.9) Z(B,s) F(Z(B))

and

%

*(2.2.10) Z(B,s + z) = Z(B,s) + Z(B,x). i

Now if Zd(B,.) = Z(AcfB,.), then Zd = (Zd( '); B E 3) is an independently

scattered SaS random measure with control measure md and by (2.2.10) it has Zc('.s)

as an admissible translate. But md is non-atomic, thus by Proposition 2.2.1.

zd(.s) 0, i.e. for all B E J,

0 = Zd(Bs) = Z(AcnB,s) = F(Z(AcnB)) = F(Zd(B)).

and hence ,

s(t) = F[X(t)] = F[Xa(t)+Xd(t)] = F[Xa(t)]

(since X d is obtained by a linear operation on Zd which implies F[Xd(t)] = 0).

% %. %-:'..~-. ..--- ii %% % .... .- .-. .
% % %(
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Therefore

(2.2.11) s(t) F[Xa(t)] F[E' 1 fn(t) Zn]

jN E
n1fn(t)F(Zn) n= fn(t)sn N

= NL fn(t,an) sn, A

where Sn F(Zn) and sn mi/(Ian})sn.- On the other hand -

XRa FNt'~- f(t,an)2({an},x); t E T)

has distribution Maand by the linearity of the map xr , a(',x), the function Xa( ,s)

is an admissible translate of R( and hence Of Xa. But

Xat~ FN ~:: f(t.an)Z({an},s)L

= ZY... f(t,an)F[Z({an}IA

Y- N f(t ,an)s'n ZrN fn(t)sn St)

i.e. s Is an admissible translate Of Xa.

ji) ij~ The proof is identical to that in Proposition 2.2.1.

LhI jLj The proof is as in Proposition 2.2.1, with

c-n(n.x) 2 ({an})/m ({an)), so that by (2.2.9)

(2.2.12) t.(n~s) 2 ({an}, s)/m ({an})

1/cs
-F[Z({an 1 )]I/m (fan}))

1/(k
nSh/m ({an}) =Sn.

To) prove that a translate which is not admissible is singular, it suffices to consider

.. . . . . .. . . .6
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s E F(X), i.e., s(t) F[X(t)], as by Proposition 2.1.4, s F implies singularity.

Suppose F[Xd(t)] # 0. Then there exists B E 5 such that F[Zd(B)] - 0 and by (2.2.9),

Zd(B,s) = Z(AcnB,s) = F[Z(AcnB)] = F[Zd(B)] # 0.

It follows from Proposition 2.2.1 that Is+X -d1 ± px2 -1 and hence us+X ± PX"

Therefore s(t) =F[Xa(t)] = N=lfn(t)sn and as in the proof of proposition 2.2.1,

NN

_'= n = oo implies ps+X _L jiX " 0"
no

It follows from Proposition 2.2.2 that for an invertible SaS process with nonatomic

control measure every non-zero translate is singular. In particular, this contains

Corollary 10.1 of Zinn (1975). Applied to SaS processes with purely atomic control

measure. Proposition 2.2.2 is a stochastic process version of a result proved in Thang .

and Tien (1979), Theorem 4, for SaS measures with discrete spectral measures on

separable Banach spaces. The proposition completes the result in Thang and Tien ."-

(1979) providing a dichotomy for the problem of admissible translates.

Proposition 2.2.2 also provides examples where the set of admissible translates is a

non-trival proper subset of the function space F of the process X. E.g. if

X(t) = Z 1 fn(t)Zn, t E T, where Z1 , Z2 ,... are i.i.d. standard SaS random variables

with I < o < 2 and Ln-o-{(fn(t); n E N); t E T} 1,, then

F- {s: s(t) = Dn1 
s n fn(t), x I s n  < x},

while the set of admissible translates is the infinite dimensional subspace (since t* > 2)

2of Fl for which Ec snI < x: hence we have equality only if a = 2. and proper

inclusion if 1 < a < 2. There is a natural identification between the set of admissible

translates, which is always a linear space, and the Hilbcrt space /.). namely

%.,-

. . ,; .. .. . . . s ; . . .. . . 0 , ) ., .? .? . € t ? t . . . .' . . ' , -* . , ' , ' ' ' ' - ' . ' ' ' ' , ¢ ' r '. - ' . .r r ' , " . " € " . '. o , .' ' ,t d , " . - - . _ . . " . ', _ % ' . . . ¢ ...', ". . ' -. -. . ' -. . ' - -, x . . . . .Q . . . ... . . % r4 .
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(sn; n E N) - s(.) = n__ n(') n=I

This map is invertible with the inverse map given by the transformation ¢ defined in the

proof in Proposition 2.2.2 restricted to the set of admissible translates of X (cf. 2.2.12).

Thus for every a E (0,2), the linear space of admissible translates can be given a Hilbert

space structure by defining the inner product

<sIs2 <(Sl,n)'(S2,n)> 12 = n nS2,n'

where si(t) = n'lEicin fn(t), i = 1,2. Note that in this case when I < a < 2,Ilsll ( lnls / c n

lislIF= (ZIsnI and hence 1111 is not a natural norm on the linear space of

admissible translates, in contrast with the case of Gaussian (a = 2) and a-sub-Gaussian

processes with 1 < a < 2. I

Important examples of SaS processes with invertible spectral representation are

presented in the following.

Harmonizable SaS Processes (and sequences).
dt. d

Let X (X(t); t E T), T - Rd or 7 d, d E N, be a SaS harmonizable process, i.e., X

has the representation

-.

X(t) = e i<t u>Z(du), t E T,

where I= Rd and [-rjrd for T =Rd and Zd respectively and Z is a SaS

independently scattered random measure with finite control measure m, referred to as

the spectral measure of the harmonizable process X. If the spectral measure m is

nonatomic and 0 < a < 2 then it follows from Proposition 2.2.2 that X has no ,

%."

. ...-- '-"."
-- , , .



35

nontrivial admissible translate. When the stable distribution of Z is radially symmetric,

i.e. when X is stationary, this result exhibits a different behavior compared with the

stationary Gaussian processes a = 2, whose admissible translates are precisely the

functions

s(t) f~ e"tu> 2(u)m(du), z E L2 (m).

In contrast, if m is purely discrete, i.e. X has a Fourier series representation

* X(t) = FN_ bn ei<cn~t>Zn N<x-

with Zn's i.i.d. standard SaS random variables and Efo 1bn1a < oc, the set of
n=~1

admissible translates is %

is: s(t) ZFN sn en~t EN.1 sn/bnI 2  < 001,

and depends on a, 0 < a < 2, only via the sequence (bn; n E N) E la. In other words

for fixed (bn; i E N) E I I, 13 -/ 2, define

Xa(t) = -0 0  bnexpint>za
n=1npicnt} a

where the Zfl,,'s are standard i.i.d. SaS with /3 a e<2 for 1 <3<!52 and 1< or < 2

for 3 =1. Then all these processes X, have the same set of admissible translates.

Continuous time SaS moving averages.

* Another class of SarS processes is the class of real moving averages,

%4% % % %
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X(t) = fR f(t-u)Z(du), t E R,

where Z has Lebesgue control measure and f E La(Leb). When f vanishes on tlt;

neg:-tive line, they are called nonanticipating moving averages and they occur as the

stationary solutions of nth order linear stochastic differential equations with constant

coefficients driven by stable motion Z.

In the Gaussian case a - 2 the admissible translates coincide with the function

space (RKHS)

F 9  = {s: s(t) = fRf(t-u)z(u)du, z E L2 (Leb)}

= {s: s E L2 (Leb), s/f E L2 (Leb)},

where denotes Fourier transform.

Examples of moving averages with invertible spectral representation and therefore

with no admissible translates, can be obtained by taking

i) f continuous and equal to zero on (-xo,O) and at infinity (Atzman (1983),

Theorem 2), .

ii) a E (1,2) and f the Fourier transform of some function F in La,(Leb) with F

p 0 a.e. (Leb) (Titchmarsh (1928), Theorem 75). .%..

Case i) includes nonanticipating moving averages with continuous kernel f, while

case ii) contains certain nonanticipating moving averages with discontinuous kernels f,

namely the stationary solutions of nth order linear stochastic differential equations with

constant coefficients. There f(t) is a linear combination of functions of the type

k-e -at0 (t) with k E N and a > 0, which are Fourier transforms of the

L *(Leb) functions (k)/[27r(a+iu)]. Hence f is the Fourier transform of an L ,(Leb)

function which is not zero a.e. (Leb) so that §-p{f(t-.); t E R} = La(Leb), i.e. X is . "S
invertible. Thus solutions of nth order stochastic differential equations driven by SoS

-N0
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motion have no admissible translate for 1 < a < 2. This is in sharp contrast with the

Gaussian case a = 2. E.g., if n =1, f(t) =e-tl (t) and the stable Ornstein-
(0,00)

Uhlenbeck (OU) process

(a'.-.

X(t) = ft___ e tU Z(du), t E R, L

has no admissible translates for 1 < a < 2, while for a =2 all translates of the forrr. k -.e"

S(t) = ft0 e -(-)z(u)du, z E L2 (Leb) and t E R,

are admissible for the OU process X.

Discrete time SaS processes (SaS sequences) with invertible spectral representation

have similar sets of admissible translates in the Gaussian and non-Gaussian stable case.

Of course nonadmissible translates are singular.

V,.

Independent sequences and partial sums of inderpendent SaS random variables

The set of admissible translates of a sequence of independent SaS random variables

x= (Xn; n E N) is given by

{s (sn; n E N); ZE o (sn/IIXnIla)2  < 001

The set of admissible translates of a sequence (Yn x ~k1Xkn E N) of partial

sums of independent SaS random variables X k is

{s (5sn; n E N); (f-s )/IIXnII < ,S 0  0. r

Mixed auto- rerressive moving averages of order CgL (ARMIA

olt, % %,~ % %, % %, b-.aaa /ae~ r e.-a-a.-a
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Let X = (Xn: n E N) be defined by the difference equation

* Xn-aXn - - apXn p = Zn+blZn_ 1 + + bqZn-q

where Z = (Zn; n E N) is a sequence of i.i.d. standard SaS random variables. If the

polynomials P(u) = 1-alu-...-apuP and Q(u) = 1+b 2 u+...bquq satisfy the ,

condition P(u)Q(u) 0 0 for all u E C with Jul < 1, then the difference equation defining

X has a unique stationary solution of the moving average form

Xn = k 0 0  k k5

and in addition

Zn = Xn - Z= 1 hj Xnj

(see e.g. Cline and Brockwell (1985)). The coefficients {gn; n E N} and {hn; n E N} are

uniquely determined by the power series expansions

Q(u)/P(u) - gj u j and P(u)/Q(u) = 1-Ej§ h h j , jul < 1.

Thus L(X) L(Z), i.e. X is invertible, and hence, by Proposition 2.2.2.,

s (Sn; n E 7) is an admissible translate of X if and only if it is of the form

Sn = n~Sn Fk=-oo gn - k z k

where - z2 < 0.

We should note the different behavior of moving averages in continuous and in

discrete time. A continuous time moving average may have no admissible translates,

whereas a discrete time ARMA sequence has a set of admissible translates identical to

r-.U,-;*:.- U5 +.> _5 : ***'? ..'-.~ s-" - , -- , - . ,.- - - r, v -- . , ' :,..".'
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the Gaussian case. The difference will be in the form of the Radon-Nikodym derivatives.

2.3 Comments on the Radon-Nikodym derivatives

Expressions for Radon-Nikodym derivatives in the non-Gaussian stable case are

difficult to obtain even in the case of invertible processes since no analytic expression is

generally available for the SaS densities.

As observed in Section 2.2 the measures pX and as+X are convolutions of the

measures withMXd and with pX respectively, or in other words if

E:XTxXT - XT is the map E(X 1 ,x 2 ) = xl+x 2 then MX = (aX/ Xd )E-1 and

Ps+X = (s+XaX Xd )E- 1 . When ps+X < MX, we have the following lemma is

useful

Lemma 2.3.1 Let (i' 9i), i = 1,2, be measurable spaces and let the map T: Q,1Q,) be

measurable. If p, and P2 are probability measures on (Q 1 ,151 ) such that P2 < pl, then

- o T = P , T a.e. (pl)
dpIlT-1 2

I

i.e. 7
T-1d t2T-1 ) E,, (d' / T = a.e. (p, T-1)'-

Proof. Clearly p2T - 1 < p T - 1 and for all B E G 2 we have

fdp 2 T 1  d'T 1  i

TI(B) dplTl oT dp f d 1 -
1

P2 (- 13 f = dp . 0Sp(T-IB) fT-I(B)d d"

d P



-to-

It follows from Lemma 2.3.1 that if «~+ <p then a.e. (yX) .

dp~~x/dps+X x~

AX d ua d

since

dP +:a XIX ( 1 . 2  dp.5 x dI dps+
±AX _lx s+a (xl) _/A a1X (x2) = SX

d U/X d Xa Xd - d/Xa(x)

The determination of the above conditional expectation is not possible in general.

However if the process is invertible and has only atomic component, the invertibility of

the process allows the representation of the Radon-Nikodym derivation in terms of a

standard SaS density as shown in the following

Proposition 2.3.2. Let X = (X(t); t E T) be a SaS process with a E (0,2), invertible

spectral representation and discrete control measure. If s is an admissible translate of X,

then a.e. (X

_____x_ =FN (f~ ('I(n,x)-'P(n,s)) £ XT,
dpX n= ~i~~)

where %Y' is defined in (2.2.12) and f is the standard SaS density.

Proof. Let qI': X T - X{,..,~l be the map defined in (2.2.12), i.e.

*~(x) (*I(n~x) 2 ({anl~x)/m 1/2(fan)); m E {1,2,..,njfN).

'e'eI '. , % % i
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By lemma 2.3. 1.,

1Idps~xlp( dy +X
dpX* o 0 E ix dpX ,)

Since

~x({' x~t)= n=1L fn(t) 'I'(n,x)})

n=1N

= P(w; X(t,w) F ()'in,(,)}

- P(w; Xt~w) Z~_fn(t) ZnMw))

we have C=o(TI) (where- denotes the completion with respect to A'X ("s+X))' so

that

E dy 8 x ' dpis+X

E dpx X~ dLMX

On the other hand by Kakutani's Theorem (or trivialy if N < oo),

________ - ~N f(Yn - lk(n,s))

dp Y) - 'n=i- f(Yn) 'X

Y (Yn; n E {1 ,..., n}flN). Therefore

dp. 5x (. FI N f('l'(n,x) - *(n,s)) £ET.
Ah-X(X n=1 f('I'(n,.r))
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For x =X(.,w,) the Radon-Nikodym derivative can be expressed as

diS+X (X(.'w)) =FIN Z({aflf,w,) -sn f (a}-
k m ({a})I m (Ian}))

1/a
a.e. (P). where sn m ({afl})*I(n,s).

When a = 2, f(x+s)/f(x) = exp(sx -s2/2) and thus we have the well known

expression

dps x) [FO 1(snxfl sn/2)]
dPXex n=1

where for {On; n E N} a complete orthonormal system of eigenvectors of the covariance

-pr.
operator of X and {On; n E N} the corresponding eigenvalues

-1/2
xn = I(n~x) An fj x(t) On(t)dt,

= 'I(n~) = -1/2
Sn (ns) An f1 S(t) On(t)dt,

or equivalently .

_0 -1/2 

A

X(t) Zn1 An On(t)xn,

s~) ~ -1/2 2

For non-Gaussian stable processes explicit expressions for I'are not available in

general. One example where this is possible is when X is a Fourier series, i.e.

III % NI N.

' '* ? -, .e .
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X(t) - )-:n1 bn eilCntZn, ElbnIa < co, t e T

Using arguments identical to the invension theorem for Fourier transform, one can show .

that

A *(n,x)= bn lm -LfT e-icntx(t)dt,
a T-0027 -T

where the limit is in pX (ps+X) measure and for s an admissible translate, i.e.

s(t) 0 0  b n eicnt Zc- 1512 < 00

we have

Sn -- bn l irL fT e cnt.(t)dt.

Thus

d=s+X c f(xn - sn) ,'(X) --- 1n00 fxn a.e. (pX),-

i.e.

_____ f( lim I fT -iCnt-

dIsxxW)T--0 27rbn fTe [X(t,)-s(t)]dt )
d/X n f( Iim f TT eicntX(t. ')dt )

\T-00 2 rbn-

a.e. (P).

Other cases where the map I can be determined are the discrete time SaS

processes we discussed in Section 2.3, e.g. in the inventible ARMA(p,q) we have

4I(n,r) = XI- nj n ,

%. I%%V %
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so that

Zn(-) = Xn(w)-jj=l hjXn*j(W),

and

Zn = Sn--'= lh j Sn_ j )

where Zn is as in example in Section 2.

It is well known that the likelihood-ratio test is a decision rule that is optimum

with respect to either a Neyman-Pearson or Bayes criterion, i.e. if we observe Y and we

want to test

0 :Y= X versus HA: Y =s+X,

the optimal procedure is to reject H0 if

dps+X (Y) > Ld X

for some appropriately determine threshold (dependent on the criterion used).

In the Gaussian case (a = 2) this procedures reduces to

s > L'Zn= 1 nX

In the non-Gaussian case, the likelihood ratio is difficult to implement even when it is

expressed in the form - 1 =lf(xn-sn)/f(xn).

The log of the ratio f(x-s)/f(x) has been studied in Stuck (1976); using series

expansions of the density f. Plots for log{f(x-s)/f(x)} ls(x) were presented for some
9 55
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fixed values of s. Stuck (1976) also investigated the performance of the likelihood

(optimal) test versus the linear (Gaussian) decision rule for a finite number of terms and b
',"

fixed s. i.e. the case where the Radon-Nikodym derivative is given by the finite product
w4

,

FHN f(xn - s)
n=1 f(xn)

and the plots showed that the likelihood procedure has in general a much smaller

probability of error than the linear rule, even for values of a close to 2, such as a -

1.95.

All inventible SaS processes with nonatomic control measure have no (nontrivial)

admissible translates when 0 < a < 2, whereas in the Gaussian case a = 2, their set of p

admissible translates coincides with their RKHS, which is a quite large class of functions.

Thus the detection of a nonrandom signal in additive SaS noise satisfying these

assumptions can in principle always be achieved with probability one even for signals of

comparable smoothness with the noise, i.e. the detection is singular (even though J'_

,.1

practical detectors achieving this remain to be found). In contrast in the Gaussian case

(a = 2) the additive signal detection problem is regular for signals with comparable L
smoothness with the Poise (signals in the RKHS), i.e. a Neyman-Pearson test can be

constructed having a specified probability of false alarm which maximizes the probability

of detection (which is of course always less than 1).

%
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CHAPTER III

RESULTS ON EQUIVALENCE AND SINGULARITY

3.1 On the equivalence and singularity of certain product measures

The Lebesgue decomposition of product measures was first studied and completely

solved in Kakutani (1948). His criterion is given in terms of the Hellinger integrals of

the marginal measures, which may be difficult to compute, e.g. for stable measures.
J'.

The more special problem of translates of product measures with identical one

dimensional marginals was settled in Shepp (1965) in the ease of finite Fisher

information. It was observed in LeCam (1970) that under LeCam's "1" condition the

sufficient condition for equivalence in She:,,t (1965) can be extended to a more general

scenario.

Here we show that under a condition closely related to LeCam's condition, a nearly

complete extension of Shepp's theorem holds. As an application the result on

equivalence and singularity between a sequence of i.i.d. random variables and an affine

transformation of itself extends to a large class of nonGaussian distributions, which

includes .n particular all stable distributions. Our result also contains that of Steele

(1986) on the extension of Shepp's theorem to rigid Euclidean motions (i.e., rotations,

translations, and their compositions) of an Rk vector.

In Section 3.3 these results will be used to study the Lebesgue decomposition

between certain SaS processes (e.g., independent increments, harmonizable).

Before stating the main results we need to introduce some concepts for which we

refer to Strasser (1985) Chapter 1, Section 2 and Chapter 12 Sections 75 and 78.

% %
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3.1.1 Preliminaries N".,

Given two probability measures P and Q on a measurable space (Q, C5) their

normalized Hellinger distance d and integral H are defined by

(dp)l-/2 d 1/21',

d (P-Q) 1 I (d) " d-(Qv/2di'

H(P,Q) (ddv12(Q ,/
I[

where w is any a-finite measure dominating P+Q, i.e. P+Q < v (e.g. vi P+Q).

They do not depend on v and satisfy

0 < H(PQ) < 1 and 1 - H(PQ) d2 (PQ).

Kakutani's theorem states that if (i'n; n E N ) and (An, n E N) are sequences of

probability measures and p Xn n and A = X n = IAn are their product measures.

then

(3.1.1) 1 A l= "n-=lH(1 n , An) 0 Z -n d (Pn.An) n'

and if lin -An for all n, then

2I

(3.1.2) p A H A 0in, An) < XnA

(see IKakutani (1948)).

We consider the following setting. (Q,3,v,) is a a-finite measure space. and

{P 0 : 0 E -} a family of probability measures on (Q.9) which are absolutely continuous

with respect to v. where e is an open 'ubset of R k . Define F:O - L9 (Q. .v) = L.,(t'(

%'1
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9. by

1/2

F(O) 2 2dO

F is said to be differentiable at 0, if there exists a map

DF(.,,) = DF(O): Q -R

such that

IIDF()<(2 V;k) fQIIDF(w, 0)112 k v(dwa) < oo,

i.e. DF(9) E L9 (f, 6 ,v; Rk), and

foj F(9+h)-F(O)- <DF(9),h> Rk 12 dv o(jjhII2 k) as 11hI1R -0.

R k

.r%.

p. As usual F is said to be differentiable (one0) if it is differentiable at each 0 E E). The

Fisher's information matrix is defined by

1(0) = f~ DF(9) DF(9) dv

(where DF(O)T is the transpose of the column vector DF(9)). It is non negative definite.

as aTI(9)a f, (aTDF(6)) 2 dv, and is positive definite if and only if the components of

DF(9) are linearly independent functions inL2()

3.1.2 Main result

As in LeCam (1970), our purpose is to consider product meisures

-7S
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(3.1.3) i = Xn=pn and A n=lAn
i'p

where

n= P and An = P0+hn'

0 E e is fixed and O+hn E E, n = 1,2..... Under the condition

"h: limsup H(Po+hPo)/IjhIj k < x,

LeCam (1970), Proposition 2, proved that En=l1ihn 2 k < o implies p ~ A. Here,

under the conditions that F is differentiable at 9, 1(0) is positive definite and the .

probability measures {Po; 0 E 1} are sufficiently separated, we obtain necessary and .%,
A

sufficient conditions for equivalence and singularity.

The separation type condition that we assume is

(3.1.4) "for all sufficiently small 6 > 0, inf d2(PO+h' PO) > 0 " ..
klll >b".

R
'-p

Note that if (3.1.4) does not hold then there exists 6 > 0 and a sequence (hn; n E N) in"

Rk with IhnillR k > 6 such that d 2 (PO+hn,PO) - 0 as n - co, i.e. for any c > 0 and

for n large, d(PO+hn ,P) < c, and using a well known relation between Hellinger

distance and total variation distance (see e.g. Strasser (1985)) we have

dv(P0+hnP0) sup I P9+hn(E)-P0(E) ! 21 d(P+hn,P ) < 1/2

Hence if condition (3.1.4) is violated, for c arbitrarily small there exists
%%'

.
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Rk with lil k < 6 such that

sup I PO+h(E) - PO(E) f < e.

Thus in this sense (3.1.4) is a separation type condition.

We should also mention that the proof of the sufficient condition for equivalence

can be obtained directly from LeCam (1970), Proposition 2, since L2 -differentiability is

clearly stronger than condition "I", but we choose to include a complete simple proof

here.

Proposition 3.1.1. Let a and A be as in (3.1.3), F be differentiable at 0 C e and 1(9) be

positive definite.

i) If 0 < JihnIIR k -- 0 as n - oo, then

p_L_ A Fc O J-j~llhnl 112 00n=k

and

AnE 0 Ilh n 11 k <  00.

ii) If condition (3.1.4) is satisfied then i) holds for any sequence (hn; n E N).

Proof. If since F is differentiable at 0, as 0 < lIl 0 we have
R

F(9+h) - (F(O) <DF(9), h> Rk
11ii~ - [hjj~ ["L,(, )  - (1),

liik liik

hence

IF(O+h) - F(O)l2(v )  II<DF(),h>RkIL,2(,)

IRhIRk IihliRk

r 4I
Jkx 

-
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Thus for any c > 0, there exists 6= 6 (c) > 0 such that if 0 < [h11ik < 6,
Rk4

ll<D(O)h> IL IF(0+h)-F( 0)1L2(, II <DF1(0),h>RklIL2 )

jjj < F )h Rk l 2( v)-c < - <1i 2( )-1il 2 v

Rk IhlRk IhlRk

Now

II<DF(0),h>kI2( = ffj<DF(0),h>k 2 dv = hTI(O)h,
RI2(v) >Rk

hence for all h E Rk, h A 0,

k(O) <DF(),h> RkRk %

where k(O) and K(O) are the smallest and the largest eigenvalues of 1(0). Since 1(0) is

positive definite k(O) > 0 and we can choose e > 0 with 0 < k(O)-f so that for all

0 < lhl Rk < 6,

JII(O~h) FO 111,

0 < L(O) < 2lh(l <U(O)

where L(O) = k(O)-e and U(0) = K(O)+e. Thus since d2 (P0, P0 ,) =

(iF(9)-F(9')(22 (V)/8 we have for n large

L2 (0) Ikh n2 d2 U2 (0) 1hn1ik 

0 < 8 < d2 (Pn, An) < 8

-8.

%.4

and the result follows from (3.1.1.) and (3.1.2).

ii) If (3.1.4) is satisfied and J!hnlRk -/ 0, then there exist 6 > 0 and a

'IR

% %
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subsequence (n.; j E N) with I1h nj uhta

Zcc d 2 (pan,An) Yd 2 (1,nj,~Anj)

>Z 1 inf d 2 (PO+h, PO) = c

and from (3.1.1), ja ± A. This combined with i) gives the result0

It should be mentioned that the differentiability of F(0) is generally difficult to

verify, but it can be shown that it is implied by the classical regularity conditions,

usually called Cramer-Wald and Hajek's conditions, which play an important role in

statistical estimation theory and are in principle easy to check (see e.g. Strasser (1985),

§77). However, L 2 -differentiability is weaker than any of these classical conditions, and % %

the definition of Fisher information presented here extends the classifical one. namely

1(0) I n

under the usual conditions ondP

3.1.3 Examples

kA

:3.1.3.1 Affine Transformation in Rk

Suppose (Xn; n E N) is a sequence of i.i.d. random vectors in Rk, (An; n E N) a

sequence of kxk matrices and (bn; n E N) a sequence of vectors. If we want to compare

the sequence of random vectors (Xn; n E N) with (AnXn~bn, n E N) we can take as

parameter space e9 any open subset of

% % % %
% % %V
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(0 = (A,b); A=(aij):kxk matrix, b=(bi) E Rk} =

{0; 0 = (aj1,...,alk,...,akk,bl,...,bk)}

Rk 2 +k _ Rk2 x Rk

containing the point (1,0), with

JhA1 2  Ekla 11 lb?,RI[Ikxk -i~j l ij' Rl[[k = Yql- .

f-

and

1101 2I = hAil2 k + 2jjjk[[R(kxk)+k Rkxk Rlik"

With P the common distribution of the i.i.d. random vectors Xn and 0 (A,b) we

define

(3.1.5) P 0 (B) P(Ab)(B) = P({AXn+b E B})

and note that P=P(I,0 )" From proposition 3.1.1 we have the following

Corollary 3.1.2. Let the probability measures P0 defined as in (3.1.5) be such that for
k 2 k2  k'

an open set e C R +=R xR with (1,0) E E. the family {Po;O E (3} is dominated

by v, F(0) is differentiable at (1,0) and I(I.0) is positive definite. If An - I and b, - 0 -.

as n - cc then

(Xn) (AnXn+bn) F € x7 - lhbnhl2k < xc and

n R

OP N-" %. S

*.-'- *%' "% N,* , " %,""% % % % % % '% % % % % '% - - *, % ", " "-"'-- -- " -"- - " % " " ' , -%
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1I X]I -A n Ikxk <  00,

(Xn) I (AnXn+bn) 00 lbn{ 1 = e or %

nxn~~bn1 n= Rk =0

F"nO111I-Anl Rkxk = 0-

Furthermore if {Po; 0 E e} satisfies condition (3.1.4) the above conclusions hold for all

sequence (An,bn) in e.

Proof. Putting 0 = (1,0) and (An,bn) = O+hn we have hn (An-I,bn) and

2o 2 112.

Zn=lIhnil l (kxk)+k E0 n 1llAn-111 kxk + Z 4 In= k"

The conclusion then follows from Proposition 3.1.1. 0

Remarks: a) Since the space of kxk matrices is finite dimensional, any norm can be

used in place of II.IRkxk.

b) When An = I for all n, Corollary 3.1.2 extends the result in Shepp (1965)

on translates from sequences of random variables (in R1 ) to sequences of random vectors

(in Rk).

c) Corollary 3.1.2 contains the results in Steele (1986), Theorems 1 and 2,

who considers the case where An is a rotation, i.e. Anx+bn is a rigid motion of x E Rk.

d) When the Xn's are Gaussian random variables with mean zero and

variance one, the result of Corollary 3.1.1 can be checked directly through the "%.-V.

computation of the Hellinger integrals H(P(1,0),P(an,bn)). However, even for Gaussian

random vectors the computation of Hellinger integrals is not simple in higher

%* %' V I%.

N. %p %~V p. . 4.

0 P--I e
m-, % , ,-%_% -% ,,% 2."*"- .' " " % - ' .% " "% " " -" "-

°
. ""€ a .. " 

'
.A " -%.



dimensions.

3.1.3.2 Stable Sequences.

Here we consider general (skewed, not necessarily symmetric) stable densities. We %'

denote by f (,ab)the general univariate stable density whose characteristics function

is of the form -

f 00exp~ux~ (x~x =exp-Iaujlexp(-ir13 sgn(u)/2]ibu}, if a#1.

00(a,fl,a,b Iexpj jau..i(23/ff)au ln(jauI)±ibu}, if c=1

where 0 < a <2 2, 1,31 oA(2-a), a > 0 and -oo < b <co. .p

Corollary 3.1.3. Let (Xn; n E N) be a sequence of i.i.d. stable random variables with

density f(a 0 0 , a0 , b0 ) and let (Yn; n E N) be a sequence of independent stable

random variables where the density of each Yn is f(an,Iin,an,bn) with

(an,Lin,an,bn) -~(a 0 ,130 ,a0 ,b0 ). Then

002 2
Z~1 an-a) < c, andZ (n- 0 ) 2 < ',

and=

00cc(a aO) 2  ooc, or E00(/3n/30) 2 
= c, or

n=1 nn

(Xn)" I() l i(an-a)2 cc, or E" (bb) 2  : . "

Proof: Let e be any open subset of

{O=(a,,3,a,b); a E (0,1)U(1,2), 131 < aA(2-a), a > 0, -cc < b < x}

% %"% %S
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containing the point 00 (a 0 ,3 0,a 0 b 0 ). It is known that the densities {f 0 ; 0 E E}

satisfy the usual regularity conditions of Cramer-Wald (DuMouchel (1973), page 952);

hence 1/2, 0 E E, are L2 (Leb)-differentiable (see e.g. Strasser (1985), §77). Moreover

the Fisher information matrix I(00) is positive definite (DuMouchel (1973), page 954).

Therefore the assumptions of Proposition 3.1.1 hold at 00 = (a 0 ,0 0 ,a 0 ,b 0 ). Hence for

hn =(an-C0,9n-O0,an-a 0 ,bn-b 0 ) we have

I!hn 112  a) 2 + (On-0)2 + (an-ao)2 + (bn-bo)2  07

and the result follows. 0

Corollary 3.1.4. Let (Xn; n E N) be a sequence of i.i.d. stable random variables with

density f and a E (0,1)U(1,2), i.e. Xn are standaFd SaS random variables, and

let (an,bn) and (ah, b') be two sequences in (-x,O)U(O, o) x (-oo,0c) with an/ah- 1

and (bn-bh)/ah 0. Then

(a'a 0b + bn-bh'

(anYn +bn) (ahYn+b * (Xn) (-Xn I\an an)

€: -ni( n)2 < an Z (bnbn)2 < :J, -) and E.n0\0 , ~
n= n= an%

and

(anYn+bn) ._ (aiYn+b) €= (Xn) I (-Yn+bn-bh

FOO n 11 anl)2 =  --, TOO bn-bln 2 Do.
-zT(1 -) = c c or z - n b) =

Proof: The equivalence of i) and ii) follows since the map (xn) - ((xn-bh)/a') is r

invertible. The equivalence of ii) and iii) follows from Corollary 3.1.1. (putting as

parameters a n  = 0, a0 = and b0 = 0, a n a~; n 1,2 .... )for
ah n

% %
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a E (O,I)U(1,2). 0

The separation condition (3.1.4) for the case where all the parameters but

translation (a) are kept fixed in a stable probability density follows from the inequality ,.

in Ibragimov and Has'minski (1981), Example 3, Page 57; and when 0=0 and a is fixed

it has been proved by Kanter (1975). Condition (3.1.4) is not known to be true for the

case where all the parameters vary jointly. Hence singularity does not follow for all

sequences hn = (an, On, an, bn), n=1,2,... with Jn' Ilhnllk = :: (cf Proposition

3.11).

In the next proposition we explore the tail behavior of a stable distribution to show K
that two infinite sequences of independent symmetric stable random variables with

different indexes of stability are singular."-Nh

a..:

Proposition 3.1.5 Let X=(Xn; n E N) and Y=(Yn; n E N) be two sequences of

independent (nondegenerate) symmetric stable random variables with indexes of

stability a and u3 respectively. If a :/ 3 then pX and py are singular.

Proof: Assume a < 3. For each y E (0,2) let Z7 denote a SyS r.v. with iZ 7 lly = 1. .

Thus

An(B) P(Xn E B) = P(lIXnliaZa E B),

'-I

A() P(Y_ E B) =P(1Y 1111Z 0 E B).p

Since

a P(IZ-yI > a) -C 7  as a-

% %
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(where C-, is a positive constant), given any E > 0, there exist M7 ,f such that for

a> M

a7Y- < P(JZ71 > a) < a7 ac
7 7a a

(see e.g. Feller (1966)).

From now on fix c such that 0 < c < min (Ca, Cr3 ).

Case 1. Assume

~~~A IlXnIlc 'a_
Ln - - 0 as n ->z

lyr ilo

Define : XN -X by

X(x) ('Pn(x) xn/IIYnIIO; n E N).

It follows that 41 is an i.i.d. sequence of standard SOS r.v.'s under py and under pX an

independent sequence of SaS r.v.'s with

Prnl[a = IXnI]a/[[YnHO = Tn.

As before let dv denote the total variation distance between probability measures.

For a > max (M, M supn un) we have

dv (\n'n~1, Mn4n 1) _P > a) - (ItinZal > a)

"I

> C3 - O +i

aa

%-.
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Thus

1iminf4 
Av (XnTr' .T.n 10.__ l--

a

Since dv ( F2 d ( ,)where d denotes the Hellinger distance (see e.g. Strasser

(1985)) we have

and therefore by Kakutani's Theorem (see Page 47) jiT 1 -Lp4- , which implies

Case 2. Assume O' + 0. Thus there exist 6 > 0 and a sequence (nk k E N) such that

_ nk -

Define (D: XN -xN by

4,(X)~ ~ (Tx) Xk/flXn klI! ; k E N).

Thus (D is an i.i.d. sequence of standard SaS r.v.'s under pXand under pyan

independent sequence of SO3S r.v.*s with

PD 3 Iyn k IIO/IIXnkiIla -~ 
0 kI

For a > max (, 1  M) 2ma(M n- ) we have

d -1k*., Ak~ P(jZ~l > a) -P(ju
1- Z >a

v(PkDk kk n '31> a

% %
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a

a7 - a~ ;3 'a)

Since a < 3, we have b'(a) > 0 if and only if a > 'C3 )(a-) Thus,

* ~fixing a > max {M, 6- 1 M, [M(C 1 3 + E(CC -I) 1(3a we obtain

Iimsup dv(pn0 %n1 , An4,j 1 ) > 6'(a) > 0
n-oc

and the conclusion follows as in case 1.5

* Remark: If /3=2, Proposition 3.1.5 remains true with minor modifications in its proof.

3.2. Remarks on sinizularitv and absolute continuity of Qth-order and SaS processes

A necessary condition for equivalence of two Gaussian processes is the setwise

equality of their RKHS (or the equivalence of their RKHS norms). We show that this

result remains true for SaS processes with the function space F replacing the RKHS's.

Further for p th order processes with 1 < p < 2, a necessary condition wor abolute

continuity and a sufficient condition for singularity are presented analogous to those of

Fortet ( 1973) for second order processes.

Let Xi = (Xi(t); t C T), i = 1,2. be two pth order processes. We say thatX

dominates X,) if there exists 0 < K < oo such that for all N C N, a1 ,. aN C N and

I- CET,

1I1F- 1 an 2(tri)IIIp KIN anXl(tn)IIL(y

Proposition 3.2.1. Let F. F(X.), i 1,2.

% %
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i) if Xdominates X,), then nF, C F1

ii) X1 dominates X2if and only if there exists a bounded linear transformation

E9: .f(X)-.(X, satisfying O(XI(t)) = Xq(t), t E T. Consequently, if X

dominates X,) and vice verse, then F1 =F,) (setwise), 1'11F1 an e r qivln.

and the transformation E) has bounded 1nene

Proof i) Suppose X1 dominates X,). Then for all functions s,

iN

and b taking speu over N, al,...,aN, t1 . "tN

R' 11sF : 1IF1 2

Thus if s F,), it follows that s G F 1 , which proves i).

ii) Let O:1(X 1)-L(X9)) be defined by

* ~~~n=l1~1kI ~n=Ia= xl~

It is clear that 8 is a well defined bounded linear transformation and as such it can be

extended to L(X 1 ) if and only if X, dominates X,.

For SaS processes. the next Proposition shows that mutual domination is a

necessarY condition for absolute continuity. i.e. non domination is a sufficient condition

for singularity. This Proposition is a stochastic process version of Proposition 7 in Zinn

(1975).

Z. * * .
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Prowsition 3.2.2. Let X . = (X.(t); t E T), - 1,2, be two SS processes.Ifp an

pX)are not singular, then Xdominates X2 , X2 dominates X 1 , and F, = F').

Equivalently if F, F2 then either Xdoes not dominate X2or X2does not dominate

1 2

Proof: Since lI'"LP(P) = Cp il-.,i X1 dominates X2 if and only if

Assume XIdoes not dominate X 2 . Then for any positive sequence Kn - o, as

n - c, there exist

~(i) N ~n a X 1,..
_n E k1 n,k i(tn,k), ,,.

such that

IIyn Ila ! Kn Ilyn 11,i1 , n = 1,2,..

Without loss of generality we can assume In l2 1 for all n. Thus

(1) 0Ilyn I62  K as n -.

Now consider the sequence of random variables (Yn; n E N) defined on (XT C) by

Yn(-) klnk x(tnlk). rE T

It follows that

f T exP (iuYn) duX~ exp(-IIYn 11( I )III

X ~-
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as n - c. Hence a subsequence (Ynk; k EIN) can be chosen such that if

C0  {x; Ynk(x) 0, as k --(x}, then xI(C 0 ) = 1. Clearly C0 is a measurable_"*

linear subspace of X T and, since is a Sa 2 S measure on (XT,C), it follows by the
2

zero-one law for stable measures (Dudley and Kanter (1974)) that P 9 (C 0 ) 0 or 1.

On the other hand,

dp xOrIy 2  
a2

Tx1 exp(iuYnk) dPX2= exp(-IYnk1Ia2 1u1 2 ) = exp (-Iu1 2 )

which implies that pg(C 0 ) = 0 and thus _L 1 yX 0
1 2

The crucial result used in the proof of Proposition 3.2.2 is the zero-one law. This

thresult is not available for general p order processes but the proposition has some

partial analogs for certain pth order processes.

As in iFortet (1973) we call a pth order process X = (X(t); t E T) non-reduced if

there exists some f E (0,1] such that for all countable subsets To of T,

P({J,; x(t,w) = 0, t E T 0 }) > c ; otherwise X is called reduced. Nontrivial SaS

processes are reduced. When X is separable and T an interval of the real line Fortet

(1973) showed that X is reduced if and only if P({X(t) = 0, t E T}) = 0 and

nonreduced if and only if P(X(t) = 0. t E T) > for some ( E (0,1].

Next we generalize to pth processes with 1 < p < 2 the results in Fortet (1973),

Thorbmes (3.2) and (3.3.2). The proof is identical to Fortet's and is presented in a

shorter form.

Proposition 3,2.3. Let X i = (Xi(t), t E T). i 1,2, be pth order processes with

I < p < 2 and F= F(Xi)

i) If IX < iX then FINF 2, is dense in F,).

a.

","."



ii) If either X , or X 2  is reduced, and F 1 NF 2  = {0}, then X 1  -L jX2.

Proof. i) Fix s E F2 . By Proposition 2.1.2 we have

s(t) = E(X 2 (t)Y<p-1>) = fx T-(t) a(x)<P-l>p x2(dx)

where Y E L(X 2 ) and a(x) is a representation of Y in Lp(pX )-{gx(t); t E T} C XT

- Y(-) = a(X(.,w)). Let

x 2(E) = fEgdpXI + X2 (EfN)

be the Lebesgue decomposition of jX 2 with respect to X. Define

En {x: 0 < g(x) < n}fNc and

sn(t) = fT x(t) a(x) < p  'lEn(x) px (dx)

- fxT x(t) a(x) <P-l>g(X)l En (x) (dx).

Sine a< 1E> E Lp,(,uX,) and a < p - > gl Lp,(yX1 we have s n E F nF .

Also

-K <p-1>

IYk=lck(s-sn)(tk ) = IfT _k=lckx(tk)a(x) IEC(x)pX,2(dx)I

K tkIlx 2 (dx)i1 1 P * 1 E/d'p x] * / S
< If T'Ek=lck xzklX( d) If T-I a<PI I P* ,,'"

Thus

-'SA A A '
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<p-i> ppEi-slp a I dpX = Jlal gdMX 0
F- f n % :n

as n -~zi.e. F lF2 is dense in F,

ii) For a fixed to E T, let ao(x) x(t 0 ) and define

(0) (t =f x-la(I

(0)By Proposition 2.1.2., s E F, since a0 (X) E Lp*(iiX Let21 2

(0) = x(t)aO(x) <p-1>i (X)PUX (dx)
Sn (t) f TEn 2

<p-i>S
f= x (t~O(x) g(x)l~n (x)tX (dx)

~~~~~~(0) (0)=,ie ()t 0foaltET.I

so tha (O Ff 2 . Since FiflF2  10{}, sn O ~.S t o l .I

particular

(0) ( 0  xt)
sOgn (of Xo1g(X)PX (dx) =0 for n =1,2,...,

and hence

F X(t 0)j g(x)I1X (dx) =0.

10<g<001

Consequently. since to E T is arbitrary, we have x(t) =0 a.e. (MX on {O < g < ~

for each t E T. But this implies that X1is non-reduced if

Ax (xx~) O,t E T}) > Xi ({x; 0 < g(r) < })

%N %~
.
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On the other hand if p ({x; 0 < g(x) < o}) > 0 then x(t) = 0 a.e. (gpX for each

t and f gdpx > 0. Hence
[0<g<00c] 1

px 2 ({x; (t) = 0, t E TO}) f gdpx > 0,2[O<g<00] ,

i.e. X 2 is nonreduced. Since either X, or is reduced we must have

PX ({x; 0 < g(x) < oo}) = 0, i.e. MX 1 -LpX2 "  ,

I

3.3 Dichotomies for certain SaS processes

In the study of Lebesgue decomposition of probability measures in infinite

dimensional spaces the following dichotomy "two measures are either mutually .

absolutely continuous or singular", has been proved for product measures (Kakutani ..

(1948)), for Gaussian measures (Feldman (1958) and Hajek (1958)), certain ergodic

measures (Kanter (1977)), etc. In Section 2, Chapter II we showed that this dichotomy .,

prevails for admissible translates of certain SaS processes. A dichotomy for general SaS

measures has been conjectured by Chatterji and Ramaswamy (1982) but the problem

seems to remain open.

In this section we show that a dichotomy holds for certain SaS processes, e.g.

independently scattered ScsS random measures and harmonizable SaS processes.
@

Necessary and sufficient conditions for equivalence and singularity are given and hold for

all a E (0,2).

We continue to use the notation introduced in Section 2, Chapter II. Through this ,
@

section we make the assumption that the control measures are not purely atomic with a

finite number of atoms. This is equivalent to the infinite dimensionality of the linear

space of the processes. When they are finite dimensional we always have equivalence %

since stable densities are everywhere positive. We start by proving a dichotomy for

-i-%4'N %% % % % %
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independently scattered symmetric stable random measures.

Proposition 3.3.1. For i=1,2, let Zi = (Zi(B); B E J) be an independently scattered

symmetric stable random measure with index of stability ai E (0,2) and control measure

which is not purely discrete with a finite number of atoms. Then 1and are

mutually absolute continuous if and only if the following conditions are satisfied

i) ~~2a l a 2  .

ii) mi~d = m2,d,

iii) m 1 and m 9 have the same set of atoms A {an; n E N} and

1/a 9 %
-1 1{1 - [ml({an})/m 2 ({an})]l } < 0.-

.w.

Furthermore if any of these conditions fail, MZ and are singular.
1 Z2

(Note that condition iii) is symmetric in m 1 and m 2 and independent of a as

En(1 xn) < oo if and only if Zn(1 - xq) 2 < 00).

Proof. First suppose that m 1 and m,) are not equivalent, e.g. m 2  :i mi1 . Then there

exists B E o() such that

IIZI(B)Icl = ml(B) = 0, and a1Z ,)( B) > 0.

It follows that Z does not dominate Z2 and by Proposition 3.2.2 we have singularity.

From now on we assume m 1 - m 2 .

Suppose a 1 :A a 2 . Since m1 and m 2 are not purely atomic with a finite number of

atoms, we can choose an infinite sequence (Bn; n E N) of disjoint sets in 3 such that

mi(Bn) > 0, i=1.2. Define T: X- XN by

%.
%",

................... ,... ...

- ". * .
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ffP(x) =('n(x)-x(Bn); nE N).

Thus, for i=1,2, under MZi, T is a sequence of independent SaiS random variables
i =-

with II'kn[I' = mi(Bn). It follows from Proposition 3.1.5 that if a 1 : a2, then
i- II

AZ.'z - I MZ2- so that pZ 1I -L. i2. From now on we assume a 1 = = a .

Since m1 - m2 we have md - m2 ,d. Suppose mld : m2 d, so that

mi,d({dm2d/dmld : 1}) > 0, i=1,2,

hence is

mi,d({O < dm 2 ,d/dmld < 1}) > 0 or mi,d({dm 2 d/dmld > 1}) > 0.

i's Assume mi,d({dm2,d/dml, d > 1 ) > 0. 'hen there exists 6 > 1 such that

mi,d({dm 2 ,d/dmld > 6}) > 0. Since mi,d is nonatomic, we can find a sequence

(Bn; n E N) of disjoint subsets of {dmi,d/dmld > 6} such that mld(Bn) > 0. Let
P1,d

4>: X3 XN be the map defined by

'D(x) ---(Dln(x) = x(ACNBn)/ml,d(Bn)l/1a; n E N). "

Under pZ 1 (D) is an i.i.d sequence of standard SaS r.v.'s, and under pZ 2 ' (D) is an

independent sequence of SaS r.v.'s with

PS,,

11Dn11' = m2,d(Bn)/mld(Bn).'

It follows from Corollary 3.1.4 and Kanter (1975) that E and ). -  are eiti, -

equivalent or singul iid seene stndard and rhey nd under if and only ifa

%e %%

ineedn seuec of S% .swt
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(3.3.1) F n-i [1 - m2,d (n)/Mld (Bn)) -0

Now by construction

m2 ,d(Bn) fBn dm ld dmld >6m1,d (Dn). -

Hence 1 < (Bn)/ml(Bn) so that (3.3.1) holds. Thus juZ E- I
1 2

which implies MZ 1 i

fmd(Idm /dmd 0 1} we have m j(dmlA,/dm~ > 1}) > 0 and an

identical argument applies. Therefore m, ~ n and md#m implies uZ I jZ- . a

Now assume id = n2 ,d. Since ml -~ i 2 , they have the same set of atoms

A f an; ni E NJ. Suppose pZ <«p and let E:X -xbe defined by
2 1

1/ar'-.
':(x) (En(x) =x({an})/i1({an}) ;n E N)

Thus Pz' - ~< Pz "E1and '-: is an i.i.d. sequence of standard SaS r.v.'s under p l

and under pZ2an independent sequence of ScrS r.v.'s with

11-711 m)({ an})/ini({an}). Hence by Corollary 3.1.4 and Kanter (1975),

C-0 1/ar
(3.3.2) Zn= 1[' (m2({fan})/mil ({an})) I < 00.

Also, if (3.3.2) does not hold, again Corollary 3.1.4 and Kanter (1975) imply

P jp so that pZII

Conversely, suppose that i), ii) and iii) hold. Since mid =i 2,d we have

zA z + Z i12
__ i,a ZdH12

*r J



70

where Zi,a and Zd are independent, independently scattered SaS random measures with

control measures mi,a and m d = ml,d = m2,d respectively. Let $: XN _ X " be

defined by

1/aN
[4(y)](B)= I(y,B) = Ec= 1B(an)ml({anl) yn, Y = (yn) E X

Thus (0o Zi) Zia, so that jZ = i=1,2. Now by Corollary
i~li,a
--Ia

3.1.4, iii) implies p -- - 2- hence 1 PZ2 ,. Therefore, since

Azi = MZ. , * d, i=1,2, it follows that 5Z1 - MZ2. 0

Remark: It also follows from the proof of Proposition 3.3.1 that if only one of the

control measures has a finite number of atoms Xand are singular.

As in the case of admissible translates the results on equivalence and singularity of

independently scattered SaS random measures can be extended to certain invertible SaS

processes.

Let X = (Xi(t); t E T), i=1,2, be two invertible SaS processes with spectral

representations Xi(O) -z j 'LklU) Zi(du) and control measures m i where

f E Lal(ml) n La 2 (m 2 ) and the independently scattered random measures have the

same 6-ring 5 of subsets of I as parameter space, i.e., m I and m 2 have the same sets of

finite measure. X, and X 2 will be said to be simultaneously invertible if for each B E 3

there exist Nn(B), an, 1 (B), .... anNn(B)(B), tn,i(B). tnNn(B)(B) such that

k=aBan,k(B) f(tn,k(B),-) - as n -' B.

in Lai(mi) for both i=1,2. E.g., X1 and X2 are simultaneously invertible if they are

invertible, a,= a) and dml/dm 2 is bounded above or below. In particular X1 and X.,

F-"W" .°%-%



are simultaneous invertible if they are invertible and their associated random measures

Z 1 and Z,) are equivalent, as /jZ 1 -/Z2 implies a I =a 2 , mid =m 2 ,d and
n= <22

The simultaneous invertibility of X I and X 2 allows for the study of the Lebesgue

decomposition of pX with respect to in terms of the decomposition of uZ with

respect to pZ.. Indeed Xi(t)=ff(t,u) Zi(du) is roughly speaking X i =L(Zi), where L is Zr

a linear map from L(Z) into Z(X), so we expect the singularity of X 1 and X2 to imply

the singularity of Z and Z 2 , and conversely the equivalence of Z, and Z 2 to imply the

equivalence of X, and X 2 . Simulatenous invertibility is like having Z i =L-(xi), so we

should have the singularity of Z 1 and Z 2 implying the singularity of X 1 and X 2 , and

conversely the equivalence of X, and X 2 implying that of Z, and Z2 . Hence with both

we expect to have the above implications in both directions. The next proposition

makes this precise.

Proposition 3.3.2. Let X i = (Xi(t); t E T) be two simultaneously invertible SaiS

processes with spectral representations Yi(t) = f, f(t,u) Zi(du) and control measures m i

which are not purely discrete with a finite number of atoms, Then and are

either equivalent or singular, and

i) P, PXPZ Pz)
t 1 2 1 Z % g,

ii) p _ X X p Z M_ -Z2, -z
S X2 1

i.e.X - M X 2 if and only if conditions i), ii) and iii) of Proposition 3.3.1 are satisfied,

and MX -L_ M-X if and only if at least one of these conditions fail.
1 2

Proof: As in Proposition 2.2.3 for B E 3 we can define
,2-

-In(Bx) = Nn(B) ank(B)x(tnk(B)), x e X', "

i
so that 7

"1 51 % % % W. %
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(Dn(B,Xi(., w)) - Zi(B,w), i=1,2, %

in probability as n - oo. Let (Dnk(B,.); k E N) be a subsequence converging a.e.

(jqX.), i=1,2, and put
I .

Z(B) = Z(B,.) = liminf (nk(B, I
k-c k ){x; nk(x) converges}

Hence

Z(B, Xi(., w)) = Zi(B,w) a.s., 1=1,2.

The stochastic process 2=(2(B), B E J) defined on (XT, C) is an independently scattered

SaS random measure with control measure m I under and m 2 under AX2. If we
1 2

also denote by 2 the map x - Z(-, x) then

X 1 f1ix. 7 X 1 (i.e. p Z I Z )

and

j 1 _ (i.e . - 1 _1 -12 1 2 I M -9

On the other hand if i.e. X -1 - X -1 it follows that i), ii)
1 2 1 2 2

and iii) of Proposition 3.3.1 hold. Thus, we can construct independent processes Xd and

Xia on (X3, C(X 3 ), pZ.) such that

x LX +., i=1,2,i 'd + Xi,a'

with .MR Since p i = * we have jX .x9  r%
l.a 2,a d i,a

Now if jX1 and pX are not equivalent it follows that Z1 -L MZ (since otherwise
1 ~ 2 1 2

PZ 1 - 9Z2' which implies pX -,- 2 , i.e. a contradiction) and this was shown to

imply U 1 A", 0

%X 1  .X2  .-. C: , .:... .. ...
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It follows from Proposition 3.3.2 that simultaneously invertible processes are

singular whenever their indexes of stability are different. This is not generally true for '

symmetric stable processes with differer.t indexes of stability. Indeed, let

G = (G(t); t E T) be a Gaussian processes, and for i=1,2, A i a standard positive

(ai/2)-stable random variable with a, 4 a 2 , and consider the sub-Gaussian SaiS

precesses

X i = (Xi(t) = A /2G(t); t E T).

We have that

x(B)i fR+MxG(B) tAi (dx).

I.

Since the distribution of A. has positive density in we have so thatSinc n dr t1 i"A
2 '  I.

by the Corollary of Theorem 18.1 in Skorohod (1974). pX, - MX. Since the linear

space of sub-Gaussian processes does not contain (nondegenerate) independent random

variables, sub-Gaussian processes are not invertible (nor simultaneously invertible).

Further examples of symmetric stable processes with different indexes of stability which

are equivalent are

X i = (Xi(t) = Ai1/2 Gn(t); t E T)

where for each i=1,2, the vector (Ai, 1 . Ai,N) is positive (ai/2)-stable, independent of

the mutually independent Gaussian processes Gn=(Gn(t); t E T), n=1.N.

Next Proposition 3.3.2 is applied to describe the Lebesgue decomposition between

two SaS harmonizable processes. and to show that muliples of invertible processes are

singular.

.
%.*-~~.- :§'Q
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Corollary 3..3 Let Xi (Xi(t); t E T) be two harmonizable SaiS processes, i.e.

X1(t) =f, exp(i<t, u>)Zi(du), t E T,

wher I d ad [..~ ~dfor T = Rd and Zd respectively, with spectral measures mi

not purely discrete with a finite number of atoms, i =1,2. Then jXIand uX2are

equivalent if and only if

i) a= 2 =a

ii mid - ,d'

iii) m, and m,) have the same atoms fan; n E N} with

Z_) (1- ml({an})/m2(fan})]2 <KCc'
n=11

and they are singular otherwise.

Proof: Clearly X 1 and X2are simulatenously invertible, since indicator functions can be

approximated uniformly by linear combinations of the functions f(t~u) exp(i<t~u>).

Hje~ice the result follows from Proposition 3.3.2. 0

Corollary 3.3.. Let X=(X(t); t E T) be an invertible SaS process with control measure

ni which is not purely atomic with a finite number of atoms. Then pXand bX are

A singular wherever JI 4 1.

Proof. If X(t) =fif(t,u) Z(du), where Z has control neasure m. then

(bX)(t) hX( t) fhf(t .u) Z(du) ff(t .uZ (du)

%4

% 
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.

where Zb has control measure Jbj'm. Cleary X and bX are simultaneously invertible

and since m is not purely atomic with a finite number of atoms, the result follows from

Proposition 3.3.2. 0

The result in Corollary 3.3.4 is known to hold for every Gaussian processes with

infinite dimensional linear space. Here again the class of SaS sub-Gaussian processes

provides an example to show that the result is not true for all infinite dimensional SoS
I

processes. In fact, if G=(G(t); t E T) is Gaussian, A is a standard positive (o/2)-stable

1/2
random variable and X(t) = G(t), t E T), reasoning as in page 73 we have for

each b > 0,

Ybx (B fR+JuxG(B) PbA (d x). -

The distributions i'A and t bA are equivalent for all b > 0 so that AsX ,bX.

a,

N

%,%

.p

.a"
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'4---------- .•. .... . * .



%

BIBLIOGRAPHY

Araujo, A. and Gin6, E. (1980). The Central Limit Theorem For Real and Banach
Valued Random Variables. Wiley, New York.

Atzman, A. (1983). Uniform approximation by linear combinations of translations and
dilations of a function. Journal of London Mathematical Society, 2, 51-54.

Briggs. V.D. (1975). Densities for infinitely aivisible processes. Journal of Multivariate
Analysis, 5, 178-205.

Brockett, P. and Tucker, H. (1977). A conditional dichotomy theorem for stochastic
processes with independent increments. Journal of Multivariate Analysis, 7, 13-27.

Brockett, P. (1984). The likelihood ratio detector for non-Gaussian infinitely divisible,
and linear stochastic processes, The Annals of Statistics. 12, 737-744.

Cambanis. S. (1975). The measurability of a stochastic process of second order and its
linear space. Proceedings of the American Mathematical Society, 47, 467-475.

Cambanis, S. (1982). Complex symmetric stable variables and processes. In
"Contribution to Statistics: Essays in Honour of Norman L. Johnson". P.K. Sen.
Ed., North Holland. New 'york, 63-79.

Cambanis, S. and Miamee, A.G. (1985). On prediction of harmonizable stable
processes. Center for Stochastic Processes Technical Report No 110, Statistics
Department, University of North Carolina, Chapel Hill, North Carolina.

Cambanis, S. and Miller, G. (1981). Linear problems in pth order and stable processes.
SIAM Journal of Applied Mathematics, 41, 43-69.

Cambanis. S. and Soltani, A.R. (1982). Prediction of stable processes: Spectral and

moving average representations. Zeitschrift fiur Wahrscheinlichkeztstheore und
vericante Gebiete, 66, 593-612.

Chatterji. S. and Mandrekar, V. (1978). Equivalence and singularity of Gaussian
measures and applications. In "Probabilistic Analysis and Rclated Topics 1". A. 1'.
Bharucha-Reid, Ed., Academic Press. New York, 163-167.

(lhatterji. S. and Rarnaswamy (1982). Mesures Gaussiennes et mesures produits.
Lecture Noles in Mathematics No. 920. Springer-Verlag, Berlin, 570-580.

('line, D.B. and Brockwell, P.J. (1985). Linear prediction of ARMA processes with
infinite variance. Stncha.stc Processrs and Their Applzcatorts. 19, 281-296.

I)udley It. .M, and Kanter. N1. (197.1). Zero-one laws for stable imeasures. Proc, mlf Imqm

..... . . . . . . . .



L jL

,,, 77

of the American Mathematical Society, 45, 245-252.

DuMouchel, 'V.H. (1973). On the asymptomatic normality of the maximum likelihood
estimate when sampling from a stable distribution. The Annals of Statistics. 1,
948-957.

Feldman, J. (1958). Equivalence and perpendicularity of Gaussian processes. Paczfic
Journal of Mathematics, 9, 699-708.

Feller. W. (1966). An Introduction to Probability Theory and Its Applications 2, Wiley,
New York.

Fortet, R. (1973). Espaces ;i noyau reproduisant et lois de probabilit~s des fonctions
al~atoires. Annales de l'Institut Henri Poincark, B, IX, 41-48.

Gihman, 1. and Skorohod, A. (1966). On densities of probability measures in function
spaces. Russian Mathematical Surveys, 21, 83-156.

Hijek, J. (1958). A property of normal distribution of any stochastic process.
Czechoslovak Mathematical Journal, 8, 610-617.

Halmos, P.R. (1974). Measure Theory. Springer-Verlag, New York.

Hardin, D.C. (1982). On the spectral representation of symmetric stable processes.
N. Journal of Multivariate Analysis, 12, 385-401.

Huang, S.T. and Cambanis, S. (1979). Spherically invariant processes: Their non-linear
structure, discrimination and estimation. Journal of Multivariate Analysis, 9, 59-

83.

Ibragimov, I.A. and Hasminskii, R.Z. (1981). Statistical Estimation, Asymptotic
Theory, Springer Verlag, New York.

Kakutani, S. (1948). On equivalence of infinite product measures. Annals of
Mathematics, 49, 239-247.

Kanter. M. (1975), Stable densities under change of scale and total variation
inequalities. The Annals of Probability, 3, 697-707.

Kanter, M. (1977). Equivalence singularity dichotomies for a class of ergodic measures.
Mathematical Proceedings of Cambridge Philosophical Society, 81, 249-252.

lKingman, J.F.C. and Taylor, S.J. (1973). Introductzon to Measure and Probability.
Cambridge University Press, London. %

Knelbs, J. (1973). A representation theorem for symmetric stable processes and stable
measures on H. Zeitschrif fh r Wiahrschcinlzchkeztstheorie und verlvante Gebticc.
26. 259-271.

LeCam, L. (1970). On the assum,,tion used to prove asymptotic normality of maximum
likelihood estimates. Thc Annols of Mathcmatical .Statistics,41. 802-82S.

I.LePage, R. (1980). Multidimensional infinitely divisible variables and processes. Pairi I:
Stable case. "[' chrural Urport No. 292. Statistics Department, Stanford

'I,"

.~N .. .N . . .

%, .
.. A-,



University, Stanford, California.

Pang, Y., - M. (1973). Simple proofs of equivalence conditions for measures induced by
Gaussian processes. Selected Translations Mathematical Statistics and Probability,
12, American Mathematical Society, Providence, RI.

Rajput, B.S. and Rosinski, J. (1987). Spectral representations of infinitely divisible
processes, preprint.

Schilder, M. (1970). Some structural theorems for symmetric stable laws. The Annals
of Mathematical Statistics, 41, 412-421.

Sheep, L.A. (1965). Distinguishing a sequence of random variables from a translate of -'

itself. The Annals of Mathematical Statistics, 36, 1107-1112.
.1"

Singer, I. (1970). Best Approximation in Normed Linear Spaces by Elements of Linear
Subspaces, Springer-Verlag, New York.

',

Skorohod, A. (1965). Absolute continuity of infinitely divisible distributions under
translations. Theory of Probability and its Applications, 10, 465-472.

Skorohod, A. (1974). Integration in Hilbert Spaces. Springer-Verlag, Berlin.

Steele, J.M. (1986). Fisher information and detection of a Euclidean perturbation of an
independent stationary process. The Annals of Probability, 14, 326-335.

Strasser, H. (1985). Mathematical Theory of Statistics. de Gruyter, Berlin.

Stuck, B.W. (1976). Distinguishing stable probability measures, Part I: Discrete time.
The Bell System Technical Journal, 36, 1107-1112. "

Thang, D. and Tien, N. (1979). On symmetric stable measures with discrete spectral ,
measure on Banach spaces. In "Probability Theory and Vector Spaces I1'.
Lectures Notes in Mathematics, 828. A. Weron, Ed., Springer-Verlag, Berlin, 286-
301.

Titchmarsch, E.C. (1928). Fourier Integrals, University Press, Oxford.

Veeh, J. (1983). Equivalence of measures induced by infinitely divisible processes.
Journal of Multivariate Analysis, 13, 138-147.

Zinn, J. (1975). Admissible translates of stable measures. Studia Mathematica, 54. 245-
257.

%*1

U...:
f *.,



177. Y. Kasahara. N. Maejima and V. Vervant, Log fractional stable processes. March 87L

178. C. Kallianpur. A.G. Niamee and H. Niemi. On the prediction theory of two parameter
stationary random fields. March 87.

179. R. Brigola, Remark on the multiple Wiener integral. Mar. 87.

180. R. Brigola. Stochastic filtering solutions for Ill-posed linear problems and their
extension to measurable transformations, Mar. 87.

181. C. Samorodnitsky. Maxitma of symmetric stable processes, Mar. 87.

182. H.L. Hurd. Representation of harmonizable periodically correlated processes and their
covarlance. Apr. 87.

183. H.L. Hurd. Nonparametric time series analysis for periodically correlated processes.
Apr. 87.

184. T. Mort and H. Oodaira, Freidlin-Wentzell estimates and the law of the iterated
logarithm for a class of stochastic processes related to symmetric statistics. May
87.

185. R.F. Serfozo. Point processes, May 87. Operations Research Handbook on Stochastic
Processes. to appear.

186. Z.D. Bai. W.Q. Liang and W. Vervant. Strong representation of weak convergence. June
87.

187. 0. Kallenberg. Decoupling Idenftles and predictable transformations in
exchangeability. June, 87.

188. 0. Kallenberg. An elementary approach to the Ianiell-Kolmogorov theorem and some
related results. June 87. Math. Nachr.. to appear.

189. C. Samorodnitsky. Extreme of skewed stable processes, June 87.

190. D. Nualart. M. Sanz and M. Zakal. On the relations between increasing functions
associated with two-parameter continuous martingales, June 87. Z'

191. F. Avram and M. Taqqu. Weak convergence of sums of moving averages in the a-stable %
domain of attraction, June 87.

192 M.R. Leadetter. Harald Cram~r (1893-1985). July 87. ISI Review, to appear.

193. R. LePage. Predicting transforms of stable noise. July 87.

194. R. LePage and B.M. Schreiber, Strategies based on maximizing expected log. July 87.

195. J. Rositski. Series representations of infinitely divisible random vectors and a
generalized shot noise in Banach spaces. July 87.

196. J. Szulga. On hypercontractivity of a-stable random variables, O<a2. July 87. 1
197. 1. Kuznezova-Sholpo and S.T. Rachev. Explicit solutions of moment problems 1. July

87.

198. T. Hslng, On the extreme order statistics for a stationary sequence. July 87.

199. T. Hsing, On the characterization of certain point processes. Aug. 87.

200. J.P. Nolan. Continuity of symmetric stable processes. Aug. 87,

201. M. Marques and S. Cambanis. Admissible and singular translates of staile processes.
Aug. 87.

202. 0. Kal lenberg. One-dimensional uniqueness and convergence results for exchangeable
processes. Aug. 87.

203. R.J. Adler, S. Cambanis and C. Samorodnitsky. On stable Karko% processes. Srpt Si

204. G. Kallianpur and V. Perez-Abreu, Stochastic evolution equations driven by rucle,;t
space valued martingales. Sept. 87.

205 R L. Smith. Approximations in extreme vaLJe theory. Sept. 87.

206, E Willekens. Estimation of convolution tails, Sept. 87.

207. J. Rosinskl. On path properties of certain infinitely divisible processes, Sept S,

2018 A.H Korezlioglu. Computation of filters by sampling and quatiuation. Sept Si

20. J, Bather. Stopping rules and observed significance levels, Sept R1.

210 S T. Rachev and J.E. Yuklch. Convolution metrics and rates of convergence iv, h,,
central limit theorem. S.pt 87.

211, T Fujisaki. Normed Bellman equation with degenerate diffusion croefftlents atd il,
applications to differential equarts. Oct L1

212 G. Simons. Y.C. Yao and X. W., Seq,-ntial tests for the (irlft of a Wiener pis..
with a smooth prior, and the heat equation, It 8 Ni

213 R .. Smith. Extreme value theory for dependent sequences via the Steim (Ite -t1 ,I
Poisson approximation. Oct. 87

214 C HoudrA. A note on vector bimeasures, Nov 8

2Vi N R Leadhet icr. On the etoceedanre rattdom measuresn for stat itt,uTY proce--, N-.

216 M Marques. A study on L.ebesgue decon'ssition of measures thured by stable
processes. Nov 8

,, . ,* - - . .-.-... ,. .. .. .. ... . . .- ,..- . . -.. .. .5 ., .. -, .



~ - 'I

Orr=

17el?


